Skip to main content

Gauss-Lintel, an Algorithm Suite for Exploring Chord Diagrams

  • Conference paper
  • First Online:
Intelligent Computer Mathematics (CICM 2021)

Abstract

Gauss diagrams, or more generally chord diagrams are a well-established tool in the study of topology of knots and of planar curves. In this paper we present a system description of Gauss-lintel, our implementation in SWI-Prolog of a suite of algorithms for exploring chord diagrams. Gauss-lintel employs a datatype which we call “lintel”, which is a list representation of an odd-even matching for the set of integers [0,...,2n–1], for efficiently generating Gauss diagrams and testing their properties, including one important property called realizability. We report on extensive experiments in generation and enumeration of various classes of Gauss diagrams, as well as on experimental testing of several published descriptions of realizability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    A dynamic fact is a Prolog fact (atomic formula) which can be added or removed during run time. Using dynamic facts goes outside of the pure Prolog paradigm, but it is very useful for keeping information about the global state.

  2. 2.

    TaitCurves.

References

  1. The On-Line Encyclopedia of Integer Sequences. http://oeis.org/A264759

  2. Biryukov, O.N.: Parity conditions for realizability of Gauss diagrams. J. Knot Theor. Ramifications 28(1), 1950015 (2019)

    Google Scholar 

  3. Cairns, G., Elton, D.M.: The planarity porblem II. J. Knot Theor. Ramification 5(2), 137–144 (1996)

    Article  Google Scholar 

  4. Chmutov, M., Hulse, T., Lum, A., Rowell, P.: Plane and spherical curves: an investigation of their invariants. In: Summer Mathematics Research Institute, REU 2006 Proceedings, Oregon State University (2006)

    Google Scholar 

  5. de Fraysseix, H., Ossona de Mendez, P.: A short proof of a Gauss problem. In: DiBattista, G. (ed.) GD 1997. LNCS, vol. 1353, pp. 230–235. Springer, Heidelberg (1997). https://doi.org/10.1007/3-540-63938-1_65

    Chapter  Google Scholar 

  6. Dehn, M.: Über Kombinatorische Topologie. Acta Math. 67, 123–168 (1936)

    Article  MathSciNet  Google Scholar 

  7. Gauss, C.F.: Werke, vol. VII. Tuebner, Leipzig (1900)

    MATH  Google Scholar 

  8. Grinblat, A., Lopatkin, V.: On realizabilty of Gauss diagrams and constructions of meanders. J. Knot Theor. Ramifications 29(5), 2050031 (2020)

    Google Scholar 

  9. Kauffman, L.H.: Virtual knot theory. Eur. J. Comb. 20(7), 663–691 (1999)

    Article  MathSciNet  Google Scholar 

  10. Khan, A., Lisitsa, A., Vernitski, A.: Experimental mathematics approach to Gauss diagrams realizability. arxiv:2103.02102 (2021)

  11. Khan, A., Lisitsa, A., Vernitski, A.: Gauss-lint algorithms suite for Gauss diagrams generation and analysis. Zenodo (2021). https://doi.org/10.5281/zenodo.4574590

  12. Lovász, L., Marx, M.L.: A forbidden substructure characterization of Gauss codes. Bull. Am. Math. Soc. 82(1), 121–122 (1976)

    Google Scholar 

  13. Lyndon, R.C.: On Burnside’s problem. Trans. Am. Math. Soc. 77, 202–215 (1954)

    MathSciNet  MATH  Google Scholar 

  14. Rosenstiehl, P.: Solution algébrique du problème de Gauss sur la permutation des points d’intersection d’une ou plusieurs courbes fermées du plan. C.R. Acad. Sci. 283(série A), 551–553 (1976)

    Google Scholar 

  15. Shtylla, B., Traldi, L., Zulli, L.: On the realization of double occurrence words. Discrete Math. 309(6), 1769–1773 (2009)

    Article  MathSciNet  Google Scholar 

  16. Valette, G.: A classification of spherical curves based on Gauss diagrams. Arnold Math. J. 2(3), 383–405 (2016). https://doi.org/10.1007/s40598-016-0049-3

    Article  MathSciNet  MATH  Google Scholar 

  17. Wielemaker, J., Schrijvers, T., Triska, M., Lager, T.: SWI-prolog. Theor. Pract. Logic Program. 12(1–2), 67–96 (2012)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported by the Leverhulme Trust Research Project Grant RPG-2019-313.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexei Lisitsa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Khan, A., Lisitsa, A., Vernitski, A. (2021). Gauss-Lintel, an Algorithm Suite for Exploring Chord Diagrams. In: Kamareddine, F., Sacerdoti Coen, C. (eds) Intelligent Computer Mathematics. CICM 2021. Lecture Notes in Computer Science(), vol 12833. Springer, Cham. https://doi.org/10.1007/978-3-030-81097-9_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-81097-9_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-81096-2

  • Online ISBN: 978-3-030-81097-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics