Skip to main content

Beautiful Formalizations in Isabelle/Naproche

  • Conference paper
  • First Online:
Intelligent Computer Mathematics (CICM 2021)

Abstract

We present short example formalizations of basic theorems from number theory, set theory, and lattice theory which ship with the new \(\mathbbm {N}\)aproche component in Isabelle 2021. The natural proof assistant \(\mathbbm {N}\)aproche accepts input texts in the mathematical controlled natural language ForTheL. Some ForTheL texts that proof-check in \(\mathbbm {N}\)aproche come close to ordinary mathematical writing. The formalization examples demonstrate the potential to write mathematics in a natural yet completely formal language and to delegate tedious organisatorial details and obvious proof steps to strong automated theorem proving so that mathematical ideas and the “beauty” of proofs become visible.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cramer, M.: Proof-checking mathematical texts in controlled natural language. PhD thesis, University of Bonn (2013)

    Google Scholar 

  2. Eberl, M.: Furstenberg’s topology and his proof of the infinitude of primes. Archive of Formal Proofs (March 2020). https://isa-afp.org/entries/Furstenberg_Topology.html

  3. Frerix, S., Koepke, P.: Automatic proof-checking of ordinary mathematical texts. In: Proceedings of the Workshop Formal Mathematics for Mathematicians (2018)

    Google Scholar 

  4. Furstenberg, H.: On the infinitude of primes. Am. Math. Monthly 62(5), 353 (1955)

    Article  MathSciNet  Google Scholar 

  5. Hersh, R.: What is Mathematics, Really?. Oxford University Press, Oxford (1997)

    Google Scholar 

  6. Inglis, M., Aberdein, A.: Beauty is not simplicity: an analysis of mathematicians’ proof appraisals. Philosophia Math. 23, 87–109 (2014)

    Article  MathSciNet  Google Scholar 

  7. Isabelle contributors. The Isabelle 2021 release (February 2021)

    Google Scholar 

  8. Knaster, B., Tarski, A.: Un théorème sur les fonctions d’ensembles. Annales de la Société Polonaise de Mathématique 6, 133–134 (1928)

    MATH  Google Scholar 

  9. Koepke, P.: Textbook mathematics in the Naproche-SAD system. In: Joint Proceedings of the FMM and LML Workshops (2019)

    Google Scholar 

  10. König, J.: Mathematische Annalen. Zum Kontinuumsproblem 60, 177–180 (1905)

    Google Scholar 

  11. Kühlwein, D., Cramer, M., Koepke, P., Schröder, B.: The Naproche system (2009)

    Google Scholar 

  12. Ziegler, G.M., Aigner, M.: Proofs from THE BOOK. 4th edition, Springer, Berlin (2009)

    Google Scholar 

  13. McAllister, J.W.: Mathematical beauty and the evolution of the standards of mathematical proof. In: Emmer, M. (ed) The Visual Mind II, pp. 15–34. MIT Press, Cambridge (2005)

    Google Scholar 

  14. Paskevich, A.: Furstenberg’s proof in SAD (2008). http://nevidal.org/cgi-bin/sad.cgi?ty=txt&ln=en&link=fuerst.ftl

  15. Paskevich, A.: Méthodes de formalisation des connaissances et des raisonnements mathématiques: aspects appliqués et théoriques. PhD thesis, Université Paris (12, 2007)

    Google Scholar 

  16. Paskevich, A.: The syntax and semantics of the ForTheL language (2007)

    Google Scholar 

  17. Paulson, L.C.: Alexandria: Large-scale formal proof for the working mathematician (2018)

    Google Scholar 

  18. Rota, G.-C.: The phenomenology of mathematical beauty. Synthese 111(2), 171–182 (1997)

    Article  MathSciNet  Google Scholar 

  19. Tarski, A.: A lattice-theoretical fixpoint theorem and its applications. Pac. J. Math. 5(2), 285–309 (1955)

    Article  MathSciNet  Google Scholar 

  20. Verchinine, K., Lyaletski, A., Paskevich, A.: System for automated deduction (SAD): a tool for proof verification. In: Pfenning, F. (ed.) CADE 2007. LNCS (LNAI), vol. 4603, pp. 398–403. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-73595-3_29

    Chapter  MATH  Google Scholar 

  21. Verchinine, K., Lyaletski, A., Paskevich, A., Anisimov, A.: On correctness of mathematical texts from a logical and practical point of view. In: Autexier, S., Campbell, J., Rubio, J., Sorge, V., Suzuki, M., Wiedijk, F. (eds.) CICM 2008. LNCS (LNAI), vol. 5144, pp. 583–598. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85110-3_47

    Chapter  Google Scholar 

  22. Wells, D.: Are these the most beautiful? Math. Intell. 12, 37–41 (1990)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adrian De Lon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

De Lon, A., Koepke, P., Lorenzen, A., Marti, A., Schütz, M., Sturzenhecker, E. (2021). Beautiful Formalizations in Isabelle/Naproche. In: Kamareddine, F., Sacerdoti Coen, C. (eds) Intelligent Computer Mathematics. CICM 2021. Lecture Notes in Computer Science(), vol 12833. Springer, Cham. https://doi.org/10.1007/978-3-030-81097-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-81097-9_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-81096-2

  • Online ISBN: 978-3-030-81097-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics