Abstract
Good heuristics are essential for successful proof search in first-order automated theorem proving. As a result, state-of-the-art theorem provers offer a range of options for tuning the proof search process to specific problems. However, the vast configuration space makes it exceedingly challenging to construct effective heuristics. In this paper we present a new approach called HOS-ML, for automatically discovering new heuristics and mapping problems into optimised local schedules comprising of these heuristics. Our approach is based on interleaving Bayesian hyper-parameter optimisation for discovering promising heuristics and dynamic clustering to make optimisation efficient on heterogeneous problems. HOS-ML also use constraint programming to devise locally optimal schedules and machine learning for mapping unseen problems into such schedules. We evaluated HOS-ML on the theorem prover iProver and demonstrated that it can discover new heuristics that considerably improve performance and can solve problems that have not been solved previously by any other system.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Heuristic discovery is available at: https://gitlab.com/korovin/iprover-smac.
- 2.
CP-SAT is available at: https://github.com/google/or-tools.
- 3.
Schedule computation is available at: https://gitlab.com/edvardholden/scpeduler.
- 4.
kneed is available at: https://github.com/arvkevi/kneed.
References
Bridge, J.P., Holden, S.B., Paulson, L.C.: Machine learning for first-order theorem proving - learning to select a good heuristic. J. Autom. Reason. 53(2), 141–172 (2014)
Chen, T., Guestrin, C.: XGBoost. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (2016)
Duarte, A., Korovin, K.: Implementing superposition in iProver (system description). In: Peltier, N., Sofronie-Stokkermans, V. (eds.) IJCAR 2020. LNCS (LNAI), vol. 12167, pp. 388–397. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-51054-1_24
Feurer, M., Hutter, F.: Hyperparameter optimization. In: Hutter, F., Kotthoff, L., Vanschoren, J. (eds.) Automated Machine Learning. TSSCML, pp. 3–33. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-05318-5_1
Hutter, F., Hoos, H.H., Leyton-Brown, K.: Parallel algorithm configuration. In: Hamadi, Y., Schoenauer, M. (eds.) LION 2012. LNCS, pp. 55–70. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34413-8_5
Jakubuv, J., Suda, M., Urban, J.: Automated invention of strategies and term orderings for vampire. In: Benzmüller, C., Lisetti, C.L., Theobald, M. (eds.) 3rd Global Conference on Artificial Intelligence, GCAI 2017. EPiC Series in Computer, vol. 50, pp. 121–133. EasyChair (2017)
Jakubuv, J., Urban, J.: Blistrtune: hierarchical invention of theorem proving strategies. In: Bertot, Y., Vafeiadis, V. (eds.) Proceedings of the 6th ACM SIGPLAN Conference on Certified Programs and Proofs, CPP, pp. 43–52. ACM (2017)
Kadioglu, S., Malitsky, Y., Sellmann, M., Tierney, K.: ISAC - instance-specific algorithm configuration. In: Coelho, H., Studer, R., Wooldridge, M.J. (eds.) 19th European Conference on Artificial Intelligence, ECAI 2010. Frontiers in Artificial Intelligence and Applications, vol. 215, pp. 751–756. IOS Press (2010)
Korovin, K.: iProver – an instantiation-based theorem prover for first-order logic (system description). In: Armando, A., Baumgartner, P., Dowek, G. (eds.) IJCAR 2008. LNCS (LNAI), vol. 5195, pp. 292–298. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-71070-7_24
Kovács, L., Voronkov, A.: First-order theorem proving and Vampire. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 1–35. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39799-8_1
Kühlwein, D., Schulz, S., Urban, J.: E-MaLeS 1.1. In: Bonacina, M.P. (ed.) CADE 2013. LNCS (LNAI), vol. 7898, pp. 407–413. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38574-2_28
Lindawati, L.H.C., Lo, D.: Instance-based parameter tuning via search trajectory similarity clustering. In: Coello, C.A.C. (ed.) 5th International Conference on Learning and Intelligent Optimization, LION 5. Selected Papers. LNCS, vol. 6683, pp. 131–145. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25566-3_10
Park, H., Jun, C.: A simple and fast algorithm for k-medoids clustering. Expert Syst. Appl. 36(2), 3336–3341 (2009)
Paulson, L.C.: Three years of experience with sledgehammer, a practical link between automatic and interactive theorem provers. In: Schmidt, R.A., Schulz, S., Konev, B. (eds.) Proceedings of the 2nd Workshop on Practical Aspects of Automated Reasoning, PAAR-2010. EPiC Series in Computer, vol. 9, pp. 1–10. EasyChair (2010)
Rawson, M., Reger, G.: Dynamic strategy priority: empower the strong and abandon the weak. In: Konev, B., Urban, J., Rümmer, P. (eds.) Proceedings of the 6th Workshop on Practical Aspects of Automated Reasoning co-located with Federated Logic Conference 2018, FLoC 2018. CEUR Workshop Proceedings, vol. 2162, pp. 58–71. CEUR-WS.org (2018)
Schäfer, S., Schulz, S.: Breeding theorem proving heuristics with genetic algorithms. In: Gottlob, G., Sutcliffe, G., Voronkov, A. (eds.) Global Conference on Artificial Intelligence, GCAI. EPiC Series in Computer, vol. 36, pp. 263–274. EasyChair (2015)
Schneider, M., Hoos, H.H.: Quantifying homogeneity of instance sets for algorithm configuration. In: Hamadi, Y., Schoenauer, M. (eds.) LION 2012. LNCS, pp. 190–204. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34413-8_14
Schulz, S.: System description: E 1.8. In: McMillan, K., Middeldorp, A., Voronkov, A. (eds.) LPAR 2013. LNCS, vol. 8312, pp. 735–743. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-45221-5_49
Sutcliffe, G.: The TPTP Problem Library and Associated Infrastructure. From CNF to TH0, TPTP v6.4.0. J. Autom. Reason. 59(4), 483–502 (2017)
Urban, J.: MPTP 0.2: Design, implementation, and initial experiments. J. Autom. Reason. 37(1–2), 21–43 (2006)
Urban, J.: Blistr: the blind strategymaker. In: Gottlob, G., Sutcliffe, G., Voronkov, A. (eds.) Global Conference on Artificial Intelligence, GCAI 2015. EPiC Series in Computer, vol. 36, pp. 312–319. EasyChair (2015)
Weidenbach, C., Dimova, D., Fietzke, A., Kumar, R., Suda, M., Wischnewski, P.: SPASS version 3.5. In: Schmidt, R.A. (ed.) CADE 2009. LNCS (LNAI), vol. 5663, pp. 140–145. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02959-2_10
Xu, L., Hutter, F., Hoos, H.H., Leyton-Brown, K.: Satzilla: portfolio-based algorithm selection for SAT. J. Artif. Intell. Res. 32, 565–606 (2008)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Holden, E.K., Korovin, K. (2021). Heterogeneous Heuristic Optimisation and Scheduling for First-Order Theorem Proving. In: Kamareddine, F., Sacerdoti Coen, C. (eds) Intelligent Computer Mathematics. CICM 2021. Lecture Notes in Computer Science(), vol 12833. Springer, Cham. https://doi.org/10.1007/978-3-030-81097-9_8
Download citation
DOI: https://doi.org/10.1007/978-3-030-81097-9_8
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-81096-2
Online ISBN: 978-3-030-81097-9
eBook Packages: Computer ScienceComputer Science (R0)