Skip to main content

Databases of Gamma-Ray Bursts’ Optical Observations

  • Conference paper
  • First Online:
Data Analytics and Management in Data Intensive Domains (DAMDID/RCDL 2020)

Abstract

Gamma-ray bursts (GRBs) are the most energetic and yet the most mysterious events in the Universe, which are observed in all ranges of electromagnetic spectrum from radio-bandwidth up to very high energy of about TeV energies. Moreover, recently GRBs accompanying gravitational waves produced in binary neutron star merging were discovered. Despite on the GRB is initially registering by space-born gamma-ray omnidirectional detectors or wide field of view telescopes, the most information for GRB investigation obtained by ground based optical observations. Optical observations allow investigating not only the properties of the bursts themselves, but also their ISM surroundings, host galaxies, and phenomena related to GRBs such as core collapsed supernova and kilonova. Bright GRB can give unique information suitable for modeling, but optically bright burst is registered once per 5 years and can be counted on the fingers of one hand. Statistical analysis is still a main instrument of GRB investigation. We give a review of available optical databases of GRBs and present the original database constructed using optical observations of the Space Research Institute GRB Follow-up Network. We provide examples of some statistical properties of the phenomenon, that can be studied using these databases and discuss constructing necessary databases for future investigations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Greiner, J., Mazzali, P.A., Kann, D.A., et al.: A very luminous magnetar-powered supernova associated with an ultra-long γ-ray burst. Nature 523(7559), 189–192 (2015)

    Article  Google Scholar 

  2. Kann, D.A., Klose, S., Zhang, B., et al.: The Afterglows of swift-era gamma-ray bursts. II. Type I GRB versus type II GRB optical afterglows. Astrophys. J. 734(2), 47 p. (2011). id. 96

    Google Scholar 

  3. Kumar, P., Zhang, B.: The physics of gamma-ray bursts & relativistic jets. Phys. Rep. 561, 1–109 (2015)

    Article  Google Scholar 

  4. Racusin, J.L., Liang, E.W., Burrows, D.N., et al.: Jet breaks and energetics of swift gamma-ray burst X-Ray afterglows. Astrophys. J. 698(1), 43–74 (2009)

    Article  Google Scholar 

  5. Zhang, B.-B., van Eerten, H., Burrows, D.N., et al.: An analysis of chandra deep follow-up gamma-ray bursts: implications for off-axis jets. Astrophys. J. 806(1), 11 p. (2015). id. 15

    Google Scholar 

  6. Rees, M.J., Meszaros, P.: Unsteady outflow models for cosmological gamma-ray bursts. Astrophys. J. Lett. 430, L93–L96 (1994)

    Article  Google Scholar 

  7. Kobayashi, S., Piran, T., Sari, R.: Can internal shocks produce the variability in gamma-ray bursts? Astrophys. J. 490, 92–98 (1997)

    Article  Google Scholar 

  8. Hu, Y.-D., Liang, E.-W., Xi, S.-Q., et al.: Internal energy dissipation of gamma-ray bursts observed with swift: precursors, prompt gamma-rays, extended emission, and late X-Ray Flares. Astrophys. J. 789(2), 13 p. (2014). id. 145

    Google Scholar 

  9. Mészáros, P., Rees, M.J.: Optical and long-wavelength afterglow from gamma-ray bursts. Astrophys. J. 476(1), 232–237 (1997)

    Article  Google Scholar 

  10. Sari, R., Piran, T.: Cosmological gamma-ray bursts: internal versus external shocks. Mon. Not. Roy. Astron. Soc. 287(1), 110–116 (1997)

    Article  Google Scholar 

  11. J. Greiner’s GRB webpage. http://www.mpe.mpg.de/~jcg/grbgen.html. Accessed 30 Mar 2021

  12. Lipkin, Y.M., Ofek, E.O., Gal-Yam, A., et al.: The detailed optical light curve of GRB 030329. Astrophys. J. 606(1), 381–394 (2004)

    Article  Google Scholar 

  13. Perley, D.A., Cenko, S.B., Corsi, A., et al.: The afterglow of GRB 130427A from 1 to 1016 GHz. Astrophys. J. 781(1), 21 p. (2014). id. 37

    Google Scholar 

  14. Hjorth, J., Bloom, J.S.: The gamma-ray burst - supernova connection. In: Kouveliotou, C., Wijers, R.A.M.J., Woosley, S. (eds.) Chapter 9 in “Gamma-Ray Bursts”, Cambridge Astrophysics Series, vol. 51, pp. 169–190. Cambridge University Press, Cambridge (2012)

    Google Scholar 

  15. Volnova, A.A., Pruzhinskaya, M.V., Pozanenko, A.S., et al.: Multicolour modelling of SN 2013dx associated with GRB 130702A. Mon. Not. Roy. Astron. Soc. 467(3), 3500–3512 (2017)

    Article  Google Scholar 

  16. Li, L.-X., Paczynski, B.: Transient events from neutron star mergers. Astrophys. J. Lett. 507(1), L59–L62 (1998)

    Article  Google Scholar 

  17. Metzger, B.D., Martínez-Pinedo, G., Darbha, S., et al.: Electromagnetic counterparts of compact object mergers powered by the radioactive decay of r-process nuclei. Mon. Not. R. Astron. Soc. 406(4), 2650–2662 (2010)

    Article  Google Scholar 

  18. Tanvir, N.R., Levan, A.J., Fruchter, A.S., et al.: A ‘kilonova’ associated with the short-duration γ-ray burst GRB 130603B. Nature 500(7464), 547–549 (2013)

    Article  Google Scholar 

  19. Abbott, B.P., Abbott, R., Abbott T.D., et al.: Multi-messenger observations of a binary neutron star merger. Astrophys. J. Lett. 848(2), 59 p. (2017). id. L12

    Google Scholar 

  20. Pozanenko, A.S., Barkov, M.V., Minaev, P.Yu., et al.: GRB 170817A associated with GW170817: multi-frequency observations and modeling of prompt gamma-ray emission. Astrophys. J. Lett. 852(2), 18 p. (2018). id. L30

    Google Scholar 

  21. Palla, M., Matteucci, F., Calura, F., Longo, F.: Galactic archaeology at high redshift: inferring the nature of GRB host galaxies from abundances. Astrophys. J. 889(1), 17 p. (2020). id. 4

    Google Scholar 

  22. Volnova, A.A., Pozanenko, A.S. Gorosabel, J., et al.: GRB 051008: a long, spectrally hard dust-obscured GRB in a Lyman-break galaxy at z ≈ 2.8. Mon. Not. Roy. Astron. Soc. 442(3), 2586–2599 (2014)

    Google Scholar 

  23. Costa, E., Frontera, F., Heise, J., et al.: Discovery of an X-ray afterglow associated with the γ-ray burst of 28 February 1997. Nature 387(6635), 783–785 (1997)

    Article  Google Scholar 

  24. Yi, S.X, Yu, H., Wang, F. Y., Dai, Z.-G.: Statistical distributions of optical flares from gamma-ray bursts. Astrophys. J. 844(1), 8 p. (2017). id. 79

    Google Scholar 

  25. Mazaeva, E.; Pozanenko, A.; Minaev, P.: Inhomogeneities in the light curves of gamma-ray bursts afterglow. Int. J. Mod. Phys. D 27(10) (2018). id. 1844012

    Google Scholar 

  26. Amati, L., Guidorzi, C., Frontera, F., et al.: Measuring the cosmological parameters with the Ep,i-Eiso correlation of gamma-ray bursts. Mon. Not. Roy. Astron. Soc. 391(2), 577–584 (2008)

    Article  Google Scholar 

  27. Ghirlanda, G., Nava, L., Ghisellini, G., et al.: Gamma-ray bursts in the co-moving frame. Mon. Not. Roy. Astron. Soc. 420(1), 483–494 (2012)

    Google Scholar 

  28. Fong, W., Berger, E., Metzger, B. D., et al.: Short GRB 130603B: discovery of a jet break in the optical and radio afterglows, and a mysterious late-time X-Ray excess. Astrophys. J. 780(2), 9 p. (2014). id. 118

    Google Scholar 

  29. Wang, X.-G., Zhang, B., Liang, E.-W., et al.: Gamma-ray burst jet breaks revisited. Astrophys. J. 859(2), 22 p. (2018). id. 160

    Google Scholar 

  30. Cano, Z.: The observer’s guide to the gamma-ray burst-supernova connection. In: Eighth Huntsville Gamma-Ray Burst Symposium, held 24–28 October 2016 in Huntsville, Alabama. LPI Contribution No. 1962, id. 4116 (2016)

    Google Scholar 

  31. Modjaz, M., Liu, Y. Q., Bianco, F.B., Graur, O.: The spectral SN-GRB connection: systematic spectral comparisons between type Ic supernovae and broad-lined type Ic supernovae with and without gamma-ray bursts. Astrophys. J. 832(2), 23 p. (2016). id. 108

    Google Scholar 

  32. Lü, H.-J., Lan, L., Zhang, B., et al.: Gamma-ray burst/supernova associations: energy partition and the case of a magnetar central engine. Astrophys. J. 862(2), 13 p. (2018). id. 130

    Google Scholar 

  33. Pandey, S.B., Hu, Y., Castro-Tirado, A.J., et al.: A multiwavelength analysis of a collection of short-duration GRBs observed between 2012 and 2015. Mon. Not. Roy. Astron. Soc. 485(4), 5294–5318 (2019)

    Article  Google Scholar 

  34. Minaev, P.Y., Pozanenko, A.S.: The Ep,I-Eiso correlation: type I gamma-ray bursts and the new classification method. Mon. Not. Roy. Astron. Soc. 492(2), 1919–1936 (2020)

    Article  Google Scholar 

  35. Wang, F., Zou, Y.-C., Liu, F., et al.: A comprehensive statistical study of gamma-ray bursts. Astrophys. J. 893(1), 90 p. (2020). id. 77

    Google Scholar 

  36. GCN Circulars. https://gcn.gsfc.nasa.gov/gcn3_archive.html. Accessed 30 Mar 2021

  37. SWIFTGRB - Swift Gamma Ray Bursts Catalog. https://heasarc.gsfc.nasa.gov/W3Browse/swift/swiftgrb.html. Accessed 30 Mar 2021

  38. Band, D., Matteson, J., Ford, L., et al.: BATSE observations of gamma-ray burst spectra. I. Spectral diversity. Astrophys. J. 413, 281 (1993)

    Article  Google Scholar 

  39. Donato, D., Angelini, L., Padgett, C.A., et al.: The HEASARC swift gamma-ray burst archive: the pipeline and the catalog. Astrophys. J. Suppl. 203(1), 17 p. (2012). id. 2

    Google Scholar 

  40. Kann, D.A., Klose, S., Zhang, B., et al.: The afterglows of swift-era gamma-ray bursts. I. Comparing pre-swift and swift-era long/soft (Type II) GRB optical afterglows. Astrophys. J. 720(2), 1513–1558 (2010)

    Google Scholar 

  41. Lipunov, V., Kornilov, V., Gorbovskoy, E., et al.: Master robotic net. Adv. Astron. (2010). id. 349171

    Google Scholar 

  42. Ershova, O.A., et al.: Early optical observations of gamma-ray bursts compared with their gamma- and X-Ray characteristics using a MASTER global network of robotic telescopes from Lomonosov moscow state university. Astron. Rep. 64(2), 126–158 (2020). https://doi.org/10.1134/S1063772920020018

    Article  Google Scholar 

  43. Akerlof, C.W., Ashley, M.C.B., Casperson, D.E., et al.: The ROTSE-III robotic telescope system. Publ. Astron. Soc. Pac. 115(803), 132–140 (2003)

    Article  Google Scholar 

  44. Rykoff, E.S., Aharonian, F., Akerlof, C.W., et al.: Looking into the fireball: ROTSE-III and swift observations of early gamma-ray burst afterglows. Astrophys. J. 702(1), 489–505 (2009)

    Article  Google Scholar 

  45. Cui, X.H., Wu X.F., Wei J.J., et al.: The optical luminosity function of gamma-ray bursts deduced from ROTSE-III observations. Astrophys. J. 795(2), 6 p. (2014). id. 103

    Google Scholar 

  46. Li, L., Wang, Y., Shao, L., et al.: A large catalog of multiwavelength GRB afterglows. I. color evolution and its physical implication. Astrophys. J. Suppl. Ser. 234(2), 29 p. (2018). id. 26

    Google Scholar 

  47. Blanchard, P.K., Berger, E., Fong, W.: The offset and host light distributions of long gamma-ray bursts: a new view from HST observations of swift bursts. Astrophys. J. 817(2), 30 p. (2016). id. 144

    Google Scholar 

  48. GHostS – GRB Host Studies. http://www.grbhosts.org/Default.aspx

  49. Pozanenko, A., Mazaeva, E., Volnova, A., et al.: GRB afterglow observations by international scientific optical network (ISON). In: Eighth Huntsville Gamma-Ray Burst Symposium, held 24–28 October, 2016 in Huntsville, Alabama. LPI Contribution No. 1962, id.4074 (2016)

    Google Scholar 

  50. Mazaeva, E., et al.: Searching for optical counterparts of LIGO/Virgo events in O2 run. In: Elizarov, A., Novikov, B., Stupnikov, S. (eds.) DAMDID/RCDL 2019. CCIS, vol. 1223, pp. 124–143. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-51913-1_9

    Chapter  Google Scholar 

  51. Skvortsov, N.A., et al.: Conceptual approach to astronomical problems. Astrophys. Bull. 71(1), 114–124 (2016). https://doi.org/10.1134/S1990341316010120

    Article  Google Scholar 

  52. Kalinichenko, L.A., Volnova, A.A., Gordov, E.P., et al.: Data access challenges for data intensive research in Russia. Inform. Appl. 10(1), 2–22 (2016)

    Google Scholar 

  53. Kalinichenko, L., Fazliev, A., Gordov, E.P., et al.: New data access challenges for data intensive research in Russia. In: CEUR Workshop Proceedings “Selected Papers of the 17th International Conference on Data Analytics and Management in Data Intensive Domains, DAMDID/RCDL 2015”, vol. 1536, pp. 215–237 (2015)

    Google Scholar 

  54. LSST Science Collaborations and LSST Project 2009, LSST Science Book, Version 2.0, arXiv:0912.0201

  55. Kool, E., Stein, R, Sharma, Y., et al.: LIGO/Virgo S190901ap: Candidates from the Zwicky Transient Facility. GCN Circ. 25616 (2019)

    Google Scholar 

  56. Abbott, B.P., Abbott, R., Abbott, T.D. et al.: Gravitational waves and gamma-rays from a binary neutron star merger: GW170817 and GRB 170817A. Astrophys. J. Lett. 848(2), 27 p. (2017). id. L13

    Google Scholar 

  57. Pozanenko, A.S., Minaev, P.Y., Grebenev, S.A., Chelovekov, I.V.: Observation of the second LIGO/Virgo event connected with a binary neutron star merger S190425z in the gamma-ray range. Astron. Lett. 45(11), 710–727 (2019). https://doi.org/10.1134/S1063773719110057

    Article  Google Scholar 

  58. Abbott, B.P., Abbott, R., Abbott, T.D., et al.: GW190425: observation of a compact binary coalescence with total mass ∼3.4 M\( \odot \). Astrophys. J. Lett. 892(1), 24 p. (2020). id. L3

    Google Scholar 

  59. SIMBAD - SIMBAD Astronomical Database - CDS (Strasbourg). http://simbad.u-strasbg.fr/simbad/. Accessed 30 Mar 2021

  60. NED - NASA/IPAC Extragalactic Database. https://ned.ipac.caltech.edu. Accessed 30 Mar 2021

  61. Virtual Observatory http://ivoa.net. Accessed 30 Mar 2021

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Volnova, A., Pozanenko, A., Mazaeva, E., Belkin, S., Minaev, P. (2021). Databases of Gamma-Ray Bursts’ Optical Observations. In: Sychev, A., Makhortov, S., Thalheim, B. (eds) Data Analytics and Management in Data Intensive Domains. DAMDID/RCDL 2020. Communications in Computer and Information Science, vol 1427. Springer, Cham. https://doi.org/10.1007/978-3-030-81200-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-81200-3_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-81199-0

  • Online ISBN: 978-3-030-81200-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics