Skip to main content

Data Driven Detection of Technological Trajectories

  • Conference paper
  • First Online:
Data Analytics and Management in Data Intensive Domains (DAMDID/RCDL 2020)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1427))

  • 257 Accesses

Abstract

The paper presents a text mining approach to identifying and analyzing technological trajectories. The main problem addressed is the selection of documents related to a particular technology. These documents are needed to detect a trajectory of technology. The approach includes new keyword and keyphrase detection method, word2vec embeddings-based similar document search method and fuzzy logic-based methodology for revealing technology dynamics. USPTO patent database was used for experiments. The database contains more than 4.7 million documents from 1996 to 2020. Self-driving car technology was chosen as an example. The result of the experiment shows that the developed methods are useful for effective searching and analyzing information about given technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dosi, G.: Technological paradigms and technological trajectories: a suggested interpretation of the determinants and directions of technical change. Res. Policy 11(3), 147–162 (1982)

    Article  Google Scholar 

  2. Volkov, S.S., Devyatkin, D.A., Sochenkov, I.V., Tikhomirov, I.A., Toganova, N.V.: Towards automated identification of technological trajectories. In: Kuznetsov, S.O., Panov, A.I. (eds.) Artificial Intelligence: RCAI 2019, pp. 143–153. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-30763-9_12

    Chapter  Google Scholar 

  3. Coccia, M., Watts, J.: A theory of the evolution of technology: technological parasitism and the implications for innovation management. J. Eng. Technol. Manag. 55, 101552 (2020)

    Google Scholar 

  4. Loreto, V., Servedio, V.D.P., Strogatz, S.H., Tria, F.: Dynamics on expanding spaces: modeling the emergence of novelties. In: Degli Esposti, M., Altmann, E.G., Pachet, F. (eds.) Creativity and Universality in Language. LNM, pp. 59–83. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-24403-7_5

    Chapter  Google Scholar 

  5. Napolitano, L., et al.: Technology networks: the autocatalytic origins of innovation. R. Soc. Open Sci. 5(6), 172445 (2018)

    Google Scholar 

  6. Luo, C., Zhou, L., Wei, Q.: Identification of research fronts in artificial intelligence. In: 2017 2nd Asia-Pacific Conference on Intelligent Robot Systems (ACIRS), pp. 104–108. IEEE (2017)

    Google Scholar 

  7. Ardito, L., Messeni, P.A., Panniello, U.: Unveiling the breakthrough potential of established technologies: an empirical investigation in the aerospace industry. Technol. Anal. Strateg. Manag. 28(8), 916–934 (2016)

    Article  Google Scholar 

  8. Zhou, Y., et al.: Unfolding the convergence process of scientific knowledge for the early identification of emerging technologies. Technol. Forecast. Soc. Chang. 144, 205–220 (2019)

    Article  Google Scholar 

  9. Zou, W., et al.: Clustering approach based on Von Neumann topology artificial bee colony algorithm. In: Proceedings of the International Conference on Data Mining (DMIN) – The Steering Committee of The World Congress in Computer Science, Computer Engineering and Applied Computing (WorldComp), p. 1 (2011)

    Google Scholar 

  10. Wang, X., Ren, H., Chen, Y., Liu, Y., Qiao, Y., Huang, Y.: Measuring patent similarity with SAO semantic analysis. Scientometrics 121(1), 1–23 (2019). https://doi.org/10.1007/s11192-019-03191-z

    Article  Google Scholar 

  11. Kelly, B., et al.: Measuring technological innovation over the long run. National Bureau of Economic Research. No. w25266 (2018)

    Google Scholar 

  12. Norman, C.: Technical Term Extraction Using Measures of Neology (2016)

    Google Scholar 

  13. Zadeh, L.A.: The concept of a linguistic variable and its application to approximate reasoning—I. Inf. Sci. 8(3), 199–249 (1975). https://doi.org/10.1016/0020-0255(75)90036-5

    Article  MathSciNet  MATH  Google Scholar 

  14. Search for patents–USPTO. https://www.uspto.gov/patents-application-process/search-patents. Accessed 30 July 2020

  15. Osipov, G., Smirnov, I., Tikhomirov, I., Sochenkov, I., Shelmanov, A.: Exactus expert—search and analytical engine for research and development support. In: Hadjiski, M., Kasabov, N., Filev, D., Jotsov, V. (eds.) Novel Applications of Intelligent Systems, pp. 269–285. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-14194-7_14

    Chapter  Google Scholar 

  16. Dataset trajectories-uspto-v2. http://nlp.isa.ru/trajectories-uspto-v2. Accessed 19 May 2020

  17. Suvorov, R.E., Sochenkov, I.V.: Establishing the similarity of scientific and technical documents based on thematic significance. Sci. Tech. Inf. Process. 42(5), 321–327 (2015). https://doi.org/10.3103/S0147688215050081

    Article  Google Scholar 

  18. Foster, R.N.: Working the S-curve: assessing technological threats. Res. Manag. 29(4), 17–20 (1986)

    Google Scholar 

  19. Andersen, B.: The hunt for S-shaped growth paths in technological innovation: a patent study. J. Evol. Econ. 9(4), 487–526 (1999)

    Article  Google Scholar 

  20. Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent Dirichlet allocation. J. Mach. Learn. Res. 3(Jan), 993–1022 (2003)

    Google Scholar 

  21. Le, Q., Mikolov, T.: Distributed representations of sentences and documents. In: International Conference on Machine Learning, pp. 1188–1196 (2014)

    Google Scholar 

  22. Peters, M.E., et al.: Deep contextualized word representations. In: Proceedings of NAACL-HLT, pp. 2227–2237 (2018)

    Google Scholar 

Download references

Acknowledgements

This study was supported by Russian Foundation for Basic Research, grant number 17-29-07016 of i_m.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Volkov, S., Devyatkin, D., Tikhomirov, I., Sochenkov, I. (2021). Data Driven Detection of Technological Trajectories. In: Sychev, A., Makhortov, S., Thalheim, B. (eds) Data Analytics and Management in Data Intensive Domains. DAMDID/RCDL 2020. Communications in Computer and Information Science, vol 1427. Springer, Cham. https://doi.org/10.1007/978-3-030-81200-3_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-81200-3_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-81199-0

  • Online ISBN: 978-3-030-81200-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics