Skip to main content

Finding the TMS-Targeted Group of Fibers Reconstructed from Diffusion MRI Data

  • Conference paper
  • First Online:
Data Analytics and Management in Data Intensive Domains (DAMDID/RCDL 2020)

Abstract

Transcranial magnetic stimulation is considered as a promising diagnostic and therapeutic approach, despite the fact that its mechanisms remain poorly understood. Theoretical models suggest that TMS-induced effects, within brain tissues, are rather local and strongly depend on the orientation of the stimulated nervous fibers. Using diffusion MRI, it is possible to estimate local orientation of the white matter fibers and to compute effects, that TMS impose at each point of them. The computed effects may be correlated with the experimentally observed TMS effects. However, since TMS effects are rather local, such relationships are likely to be observed only for a small subset of the reconstructed fibers. In this work, we present an approach for finding such a TMS-targeted subset of fibers, within a cortico-spinal tract, following stimulation of the motor cortex. Finding TMS-targeted groups of fibers is an important task for both (1) better understanding of the neuronal mechanisms, underlying the observed TMS effects and (2) development of future optimization strategies for TMS-based therapeutic approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://www.trackvis.org.

  2. 2.

    https://github.com/KulikovaSofya/StimVis_TMS.

References

  1. Atzmueller, M.: Subgroup discovery. Wiley Interdisc. Rew.: Data Min. Knowl. Discov. 5(1), 35–49 (2015). https://doi.org/10.1002/widm.1144

    Article  Google Scholar 

  2. Descoteaux, M., Angelino, E., Fitzgibbons, S., Deriche, R.: Regularized, fast, and robust analytical Q-ball imaging. Magn. Reson. Med. 58(3), 497–510 (2007). https://doi.org/10.1002/mrm.21277

    Article  Google Scholar 

  3. Devlin, J.T., Watkins, K.E.: Stimulating language: insights from TMS. Brain: J. Neurol. 130(3), 610–622 (2007). https://doi.org/10.1093/brain/awl331

    Article  Google Scholar 

  4. Garyfallidis, E., et al.: Dipy, a library for the analysis of diffusion MRI data. Front. Neuroinf. 8 (2014). https://doi.org/10.3389/fninf.2014.00008

  5. Geeter, N.D., Crevecoeur, G., Leemans, A., Dupré, L.: Effective electric fields along realistic DTI-based neural trajectories for modelling the stimulation mechanisms of TMS. Phys. Med. Biol. 60(2), 453–471 (2014). https://doi.org/10.1088/0031-9155/60/2/453

    Article  Google Scholar 

  6. Hlustik, P., Solodkin, A., Gullapalli, R.P., Noll, D.C., Small, S.L.: Somatotopy in human primary motor and somatosensory hand representations revisited. Cerebral Cortex 11(4), 312–321 (2001)

    Article  Google Scholar 

  7. Iglesias, A.H.: Transcranial magnetic stimulation as treatment in multiple neurologic conditions. Curr. Neurol. Neurosci. Rep. 20(1), 1–9 (2020). https://doi.org/10.1007/s11910-020-1021-0

    Article  Google Scholar 

  8. Klomjai, W., Katz, R., Lackmy-Vallée, A.: Basic principles of transcranial magnetic stimulation (TMS) and repetitive TMS (rTMS). Ann. Phys. Rehabil. Med. 58(4), 208–213 (2015). https://doi.org/10.1016/j.rehab.2015.05.005. Neuromodulation/Coordinated by Bernard Bussel, Djamel Ben Bensmail and Nicolas Roche

  9. Knoch, D., Pascual-Leone, A., Meyer, K., Treyer, V., Fehr, E.: Diminishing reciprocal fairness by disrupting the right prefrontal cortex. Science 314(5800), 829–832 (2006). https://doi.org/10.1126/science.1129156

    Article  Google Scholar 

  10. Kulikova, S.: StimVis: a tool for interactive computation of the TMS-induced effects over tractography data. SoftwareX 12, 100594 (2020). https://doi.org/10.1016/j.softx.2020.100594

    Article  Google Scholar 

  11. Le Bihan, D., et al.: Diffusion tensor imaging: concepts and applications. J. Magn. Reson. Imaging 13(4), 534–546 (2001). https://doi.org/10.1002/jmri.1076

    Article  Google Scholar 

  12. Miranda, P.C., Correia, L., Salvador, R., Basser, P.J.: Tissue heterogeneity as a mechanism for localized neural stimulation by applied electric fields. Phys. Med. Biol. 52(18), 5603–5617 (2007). https://doi.org/10.1088/0031-9155/52/18/009

    Article  Google Scholar 

  13. Novikov, P., Nazarova, M., Nikulin, V.: TMSmap - software for quantitative analysis of TMS mapping results. Front. Hum. Neurosci. 12(239) (2018). https://doi.org/10.3389/fnhum.2018.00239

  14. Peters, J.C., Reithler, J., de Graaf, T.A., Schuhmann, T., Goebel, R., Sack, A.T.: Concurrent human TMS-EEG-fMRI enables monitoring of oscillatory brain state-dependent gating of cortico-subcortical network activity. Commun. Biol. 3(40), 1176–1185 (2020)

    Google Scholar 

  15. Richter, L., Neumann, G., Oung, S., Schweikard, A., Trillenberg, P.: Optimal coil orientation for transcranial magnetic stimulation. PLoS One 8(4) (2013). https://doi.org/10.1371/journal.pone.0060358

  16. Roth, B.J., Basser, P.J.: A model of the stimulation of a nerve fiber by electromagnetic induction. IEEE Trans. Biomed. Eng. 37(6), 588–597 (1990). https://doi.org/10.1109/10.55662

    Article  Google Scholar 

  17. Salinas, F.S., Lancaster, J.L., Fox, P.T.: Detailed 3D models of the induced electric field of transcranial magnetic stimulation coils. Phys. Med. Biol. 52(10), 2879–2892 (2007). https://doi.org/10.1088/0031-9155/52/10/016

    Article  Google Scholar 

  18. Saturnino, G.B., Madsen, K.H., Thielscher, A.: Electric field simulations for transcranial brain stimulation using FEM: an efficient implementation and error analysis. J. Neural Eng. 16(6), 066032 (2019). https://doi.org/10.1088/1741-2552/ab41ba

    Article  Google Scholar 

  19. Silva, S., Basser, P.J., Miranda, P.C.: Elucidating the mechanisms and loci of neuronal excitation by transcranial magnetic stimulation using a finite element model of a cortical sulcus. Clin. Neurophys. 119(10), 2405–2413 (2008). https://doi.org/10.1016/j.clinph.2008.07.248

    Article  Google Scholar 

  20. Thielscher, A., Opitz, A., Windhoff, M.: Impact of the gyral geometry on the electric field induced by transcranial magnetic stimulation. Neuroimage 54(1), 234–243 (2011). https://doi.org/10.1016/j.neuroimage.2010.07.061

    Article  Google Scholar 

  21. Tournier, J.D., Calamante, F., Gadian, D.G., Connelly, A.: Direct estimation of the fiber orientation density function from diffusion-weighted MRI data using spherical deconvolution. Neuroimage 23(3), 1176–1185 (2004). https://doi.org/10.1016/j.neuroimage.2004.07.037

    Article  Google Scholar 

  22. Wagner, T.A., Zahn, M., Grodzinsky, A.J., Pascual-Leone, A.: Three-dimensional head model simulation of transcranial magnetic stimulation. IEEE Trans. Biomed. Eng. 51(9), 1586–1598 (2004)

    Article  Google Scholar 

  23. Windhoff, M., Opitz, A., Thielscher, A.: Electric field calculations in brain stimulation based on finite elements: an optimized processing pipeline for the generation and usage of accurate individual head models. Hum. Brain Mapp. 34(4), 923–935 (2013)

    Article  Google Scholar 

Download references

Acknowledgement

Supported by Russian Science Foundation grant № 18-75-00034.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sofya Kulikova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kulikova, S., Buzmakov, A. (2021). Finding the TMS-Targeted Group of Fibers Reconstructed from Diffusion MRI Data. In: Sychev, A., Makhortov, S., Thalheim, B. (eds) Data Analytics and Management in Data Intensive Domains. DAMDID/RCDL 2020. Communications in Computer and Information Science, vol 1427. Springer, Cham. https://doi.org/10.1007/978-3-030-81200-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-81200-3_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-81199-0

  • Online ISBN: 978-3-030-81200-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics