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Abstract. We construct a short and adaptively secure identity-based
signature scheme tightly based on the well-known Short Integer Solu-
tion (SIS) assumption. Although identity-based signature schemes can
be tightly constructed from either standard signature schemes against
adaptive corruptions in the multi-user setting or a two-level hierarchical
identity-based encryption scheme, neither of them is known with short
signature size and tight security based on the SIS assumption. Here “short”
means the signature size is independent of the message length, which is
in contrast to the tree-based (tight) signatures.

Our approach consists of two steps: Firstly, we give two generic trans-
formations (one with random oracles and the other without) from non-
adaptively secure identity-based signature schemes to adaptively secure
ones tightly. Our idea extends the similar transformation for digital signa-
ture schemes. Secondly, we propose two constructions of non-adaptively
secure identity-based signature scheme based on the SIS and Ring-SIS
assumptions in the random oracle model.
Keywords. Identity-based Signatures, Tight Security, (Ring) Short In-
teger Solution Assumption, Lattices.

1 Introduction

Tight Security. In public-key cryptography, we often prove the security of a
scheme by reductions. Namely, we prove that, if there is an adversary A that
can break the security of a scheme, then we can construct a reduction R to solve
some hard problem (for instance, the short integer solution (SIS) problem [2]).
More precisely, by doing this, we establish the relation that εA ≤ ` · εR and the
running time of A and R are roughly the same, where εA and εR are the success
probability of A and R, respectively.

In particular, if the security loss ` is a small constant, then we call the reduction
tight [5,7]. Recently, a relaxed notion called “almost tight” is considered [13,23],
where the security loss can be dependent linearly or logarithmically on the
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security parameter. A cryptographic scheme with tight reductions does not need
to increase the key length to compensate a security loss.

In the recent years, many tools have been developed to construct tightly
secure cryptosystems [31,30,22,23,13,9,37]. However, currently, many of these
techniques crucially require pairing groups and the Diffie-Hellman assumption
which is known to be insure against a powerful quantum computer. The digital
signature scheme in [1,8] and the identity-based encryption schemes in [11,33]
are among the few exceptions which have tight post-quantum security using
lattice-based techniques.
Our goal: Identity-based signatures with tight post-quantum se-
curity. We are interested in advanced cryptographic schemes with tight post-
quantum security. In this paper, we consider identity-based signature (IBS)
schemes [51]. In an IBS, an honest user with identity id can sign a message
m using its secret key skid, and a signature σ can be publicly verified, given
the master public key mpk and a user’s identity id. We are interested in the
adaptive security of IBS schemes, where an adversary aims at forging a fresh
signature after adaptively learning users’ secret keys and signatures. The use of
identity-based cryptography can simplify the PKI requirements, and we refer [34]
for more discussion about that.

There are mainly two approaches to construct IBS schemes, but neither of
them directly yields an IBS scheme with tight post-quantum security. The first
approach [17,6] is to transform a (standard) signature scheme into an IBS, which
is often referred as the certification approach. The generic transformations in
[17,6] are not tight. Recently, it has been shown that, if the underlying signature
scheme is tightly secure in the multi-user setting with adaptive corruption, then
the IBS scheme is tightly secure [40].

Compared to the classical unforgeability in the single-user setting (EUF-CMA)
[29], the multi-user security with corruption (MU-EUF-CMAcorr) [3] is a stronger
security notion for signature schemes, where an adversary receives verification
keys of multiple users and is allowed corrupt some of them. Although EUF-CMA
non-tightly implies MU-EUF-CMAcorr, constructing a tightly MU-EUF-CMAcorr

secure signature scheme is highly challenging: To the best of our knowledge,
[27,3,16] are the only schemes that have tight MU-EUF-CMAcorr security, and they
are all based on the Diffie-Hellman assumption. There is a generic construction in
[3], but it requires a non-interactive witness-indistinguishable proof of knowledge
(NIWIPoK) system. It is unclear how to efficiently construct this particular proof
system and to instantiate their generic construction in the post-quantum setting.

To give a bit more technical insights to it, in the lattice setting, one may
consider to use a proof system (for instance, the one in [15]) together with
the OR-proof technique [14] to construct such a NIWIPoK system. However, it
requires the rewinding technique to show the PoK property, which leads to a
non-tight reduction. Alternatively, one can directly use the Unruh proof system
[52] that has tight NIWIPoK, but its proof size is linear in the security parameter,
which is insufficient for a short IBS scheme.
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The second approach [34] is to transform a 2-level hierarchical IBE (HIBE)
[26] tightly to an IBS scheme. However, the existing tightly secure HIBE schemes
are pairing-based [37,38,39]. We note that in [11] Boyen and Li proposed an
almost tightly secure lattice-based IBE and claimed (without a concrete scheme)
that it can be turned into a 2-level HIBE. Their construction is motivated by the
Katz-Wang “random-bit” technique [28], and it is rather inefficient, due to the
use of lattice-based PRFs and their homomorphic evaluation. Lattice-based PRFs
[4,32,35] often use a large modulus and have almost tightness only. In Section 1.2,
we further sketch why the “random-bit” technique is not enough for achieving
our goal.
Our results. We propose the first tightly secure IBS scheme based on lattices.
We prove the tight adaptive security of our IBS scheme based on the short integer
solution (SIS) [2] and Ring-SIS [44] assumptions which are quantum-safe. Our
Ring-SIS-based construction offers better efficiency due to shorter public keys.
Our proofs are in the random oracle model. Different to the tree-based tight SIS-
based signature scheme in [8], our signatures are short and contain only constant
number of elements. Our scheme uses the Micciancio-Peikert (MP) trapdoor
technique [46] and the Bonsai tree technique [12]. Moreover, our construction
does not require any lattice-based PRF as in [11].

1.1 Technical Details

We achieve our results in two steps.
Step 1: IBS with non-adaptive security. We consider a (weaker) non-
adaptive security of IBS schemes, where an adversary has to commit its user
secret key queries and signing queries before receiving the master public key. This
weaker security gives rise to a tight construction. The main reason is that in the
security proof, since adversaries’ user secret key queries and signing queries are
committed in advance, the reduction can tightly embed the SIS instances in the
forgery without any guessing.

More precisely, the overall idea of our non-adaptively secure scheme is as
follows. The master public key of our scheme is a random matrix A ∈ Zn×mq

with m ≥ 3n log q where the SIS assumption holds, and the master secret key
is a MP trapdoor [46] for A. For generating user secret keys and signing, we
associate matrices Fid := [A | H1(id)] ∈ Zn×(m+ndlog qe)

q and Fid,m := [A |
H1(id) | H2(id,m)] ∈ Zn×(m+2ndlog qe)

q with identity id and message m, where
H1,H2 : {0, 1}∗ → Zn×ndlog qe

q will be simulated as random oracles in the security
proof. The secret key of identity id is a MP trapdoor for Fid. Given the trapdoor
of A, this can be efficiently computed using trapdoor delegation, e.g. the Bonsai
technique [12]. The signature for message m under identity id is a “short” integer
vector z in the kernel of Fid,m (namely, Fid,m · z = 0).

Now we are ready to sketch our tight proof. We denote the list of all identities
id for user secret key queries as Lid, and the list of all identity-message pairs
(id,m) for signing queries as Lm. An adversary A has to output these two lists
before receiving the master public key. The key step in our proof is that, by
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programming the random oracles H1 and H2, the reduction can embed a gadget
matrix into Fid (for all id ∈ Lid) and Fid,m (for all (id,m) ∈ Lm) so that efficiently
inverting the SIS function for these Fid and Fid,m is possible. However, for all
id∗ /∈ Lid and (id∗,m∗) /∈ Lm, Fid∗ and Fid∗,m∗ are random matrices and inverting
the SIS function for these random matrices is hard. Here, the reduction does not
need to guess the forgery (id∗,m∗), and thus it is tight.
Step 2: From non-adaptive to adaptive security. For digital signature
schemes, it is known that, using a chameleon hash, the non-adaptive security
can be tightly transformed to adaptive security [36]. This transformation has
been used in the lattice-setting as well [12,46] with the SIS-based chameleon
hash function [12]. We note that there is a Ring-SIS-based chameleon hash
function in [19]. In this paper, we extend this generic transformation to the IBS
setting, and thus our tightly non-adaptively secure IBS yields a tight scheme
with adaptive security. Moreover, we propose a more efficient transformation
in the random oracle model (cf. Section 3.2), since our non-adaptively secure
scheme uses random oracles already. The common practice of instantiating the
random oracle with a hash function such as SHA3 will be more efficient than
using the chameleon hash technique. In particular, signature sizes are roughly
the same, whereas the chameleon hash based on SIS requires to add a matrix to
the public key. Further, the computation of this chameleon hash function is less
efficient than an highly optimized evaluation of SHA3.
Extension and future work. We note that our approach can be naturally
extended to hierarchical IBS schemes. We leave this as a future work. We also
leave constructing an efficient non-adaptively secure short IBS with tight security
in the standard model as an open problem. In combination with our transfor-
mation from Section 3, this will lead to an adaptively secure short IBS in the
standard model with tight security.

1.2 More on Related Work

The Katz-Wang “random-bit” technique. The “random-bit” technique can
be used to turn the non-tight Gentry-Peikert-Vaikuntanathan (GPV) IBE [25]
to a tightly secure one [11,33]. However, we suppose this technique is not useful
to construct a tightly secure 2-level HIBE. The high-level idea can be sketched
easily. In the tight IBE, the secret key of identity id can be viewed as the GPV
secret key of identity (id, bid), where bid ∈ {0, 1} is a random bit associated with
id, and the ciphertext of m under id∗ contains two GPV ciphertexts (c0, c1) of
m under identity (id∗, 0) and (id∗, 1). In the security proof, by putting a lattice
trapdoor in the bid-side and embedding an LWE instance in (1− bid)-side for all
identities id, we generate secret keys for identities (id, bid) and randomize c1−bid∗

in the challenge ciphertext. This is the key step, and it is important that bid∗ to
be perfectly hidden, as otherwise the adversary may attack the side without any
LWE instance.
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One can extend this “random-bit” idea to the 2-level HIBE in the natural
manner, namely, the secret key of identity (id1, id2) is the secret key of identity
(id1, bid1 , id2, bid2) in the 2-level GPV HIBE. The encryption algorithm is adapted
accordingly. Imagine that (id∗1, id

∗
2) is the challenge identity for the 2-level HIBE.

An adversary can learn the bit bid∗1 used by the reduction, by asking a user
secret key of (id∗1, id2) with id2 6= id∗2. The similar problem will happen, when we
directly use this technique in constructing tightly secure IBS. Thus, we believe the
Katz-Wang “random-bit” technique is not useful in constructing tightly secure
2-level HIBE or IBS.

Other tightly secure IBS. We note that in [54] a tightly secure IBS scheme
is proposed in a weaker security model, where an adversary cannot ask for the
secret key of id if a signature has been asked for id. Moreover, their security relies
on the factoring-based and Dlog-based assumptions, while ours is based on the
quantum-safe (Ring-)SIS assumption.

Comparison with the Certification Approach. Finally, we compare the
efficiency of our scheme with those obtained via the certification approach in
Table 1. Here we only focus on instantiating this approach with digital signature
schemes based on the plain SIS assumption in the random oracle model, namely,
[25,41] and our instantiation from SIS.

Scheme tight |mpk| |σ|

Section 4 + Section 3.1 3 2M (3m+ 2n log q)z
Section 4 + Section 3.2 3 M (m+ 2n log q)z + 2ω(log λ)

GPV [25] + Cert. 7 M M + 2mz
Lyu [41] + Cert. 7 M + n2z M + (n2 + 2m)z + 2ω(log λ)

Table 1. Comparison of our results with identity-based signature schemes obtained by
applying the certification approach [34]. We use the chameleon hash function given in
[12]. All sizes are in bits, where M denotes the size of an SIS matrix and z the size of
an element in Zq.

We note that the certification approach increases the size of user secret keys
and signatures. Namely, a user secret key consists of a secret key, a public key and
a signature of the underlying signature scheme, and an identity-based signature
contains a public key and two signatures. For schemes in [25,41], their public
keys contain a matrix. This is the reason why their signature size (in terms of
numbers of elements) is quadratic in n, while ours is linear. For schemes based on
structured assumptions such as Dilithium [18] and Falcon [21], the certification
method will lead to a linear overhead which is comparable to our instantiation
based on Ring-SIS, but our scheme is tightly secure.
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2 Preliminaries

We use standard notation for sets N,P,R,Z,Zq of natural numbers, primes, real
numbers, integers and integers modulo q ∈ N, respectively. By [n] := {1, . . . , n}
we denote the set of the first n natural numbers. We denote the security parameter
by λ ∈ N. All algorithms will get 1λ either explicitly or implicitly as an input. A
probabilistic algorithm A is said to be ppt (probabilistic polynomial time) if its
running time can be bounded by a polynomial in its input size. We also make
use of standard asymptotic notation for positive functions such as ω and O. A
function ν : N → R is negligible in its input λ if ν ∈ λ−ω(1). The term negl(λ)
always denotes a negligible function. If a function ν is at least 1− negl(λ), we
say that it is overwhelming.

Matrices and vectors are written in bold letters. Vectors should be understood
as column vectors. The Euclidean norm of a vector v is denoted by ‖v‖, and the
spectral norm of a matrix A is denoted by s1(A).

If D is a distribution, we write x← D to state that x is sampled from D. If
S is a finite set, the notation x $← S states that x is sampled uniformly random
from S. The statistical distance of distributions D1,D2 on the support X is
defined to be 1

2
∑
x∈X |Pr [D1 = x]− Pr [D2 = x]|. If the statistical distance is

negligible in λ, we say the distributions are statistically close. The min-entropy
is H∞ (D1) := − log(maxx∈X Pr [D1 = x]).

If A is an algorithm, the notation y ← A(x) means that the variable y is
assigned to the output of A on input x. Sometimes we make the randomness used
by an algorithm explicit by writing y = A(x; r) if r ∈ {0, 1}∗ is A′s randomness.
If we want to state that y is a possible output of A on input x, we write y ∈ A(x).
We use the notation T(A) for running time. In all code-based security games,
numerical values are assumed to be implicitly initialized as 0, sets and lists as ∅.
If G is a game, we write GAΠ(1λ)⇒ b to state that the game G outputs the bit
b ∈ {0, 1} considering the adversary A and the scheme Π.

Definition 1 (Chameleon Hash Function). A εtrap-chameleon hash function
(CHF) is a triple of ppt algorithms CHF = (CHGen,CHash,CHColl), where
– CHGen(1λ) takes as input the security parameter 1λ and outputs the hash
key hk and the trapdoor td. We assume that hk implicitly defines a message
spaceMhk, a randomness distribution Rhk and hash value space Hhk.

– CHash(hk,m; r) takes as input the hash key hk, a message m ∈ Mhk and
randomness r ∈ Rhk and outputs a hash value h ∈ Hhk.

– CHColl(hk, td,m, r, m̂) takes as input the hash key hk, a message m ∈ Mhk,
randomness r ∈ Rhk and a message m̂ and outputs a value r̂ ∈ Rhk.

– For every (hk, td) ∈ CHGen(1λ),m,m′ ∈Mhk the following distributions have
statistical distance at most εtrap:{

(r, h)
∣∣∣∣ r ← Rhk,
h := CHash(hk,m; r)

}
and

{
(r, h)

∣∣∣∣r′ ← Rhk, h := CHash(hk,m′; r′),
r ← CHColl(hk, td,m′, r′,m)

}
.

If εtrap is negligible in λ, we simply say that CHF is a chameleon hash function.
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Definition 2 (Collision Resistant CHF). Let CHF = (CHGen,CHash,CHColl)
be a chameleon hash function. We say that CHF is collision resistant if for every
ppt algorithm A the following advantage is negligible in λ:

Advcoll
A,CHF(λ) := Pr

[
CHash(hk,m; r) = CHash(hk,m′; r′)

∧(m, r) 6= (m′, r′)

∣∣∣∣(hk, td)← CHGen(1λ)
(m, r,m′, r′)← A(hk)

]
.

We note that chameleon hash functions based on lattice assumptions are known
in the literature [12].

Definition 3 (Identity-Based Signature Scheme). An Identity-based Signa-
ture Scheme (IBS) is defined as a tuple of ppt algorithms IBS = (Setup,KeyExt,Sig,
Ver), where
– Setup(1λ) takes as input the security parameter 1λ and outputs a master

public key mpk and a master secret key msk. We assume that mpk implicitly
defines a message spaceM =Mmpk and an identity space ID = IDmpk.

– KeyExt(msk, id) takes as input a master secret key msk and an identity id ∈
ID and outputs a secret key skid, we assume that skid implicitly contains id.

– Sig(skid,m) takes as input a secret key skid and a message m ∈M and outputs
a signature σ.

– Ver(mpk, id,m, σ) is deterministic, takes as input a master public key mpk,
identity id ∈ ID, message m ∈ M and signature σ and outputs a bit b ∈
{0, 1}.

We say that IBS is ρ-complete, if for every (mpk,msk) ∈ Setup(1λ),m ∈M, id ∈
ID we have

Pr [Ver(mpk, id,m, σ) = 1 | skid ← KeyExt(msk, id), σ ← Sig(skid,m)] ≥ ρ.

Definition 4 (Security of IBS). Let IBS = (Setup,KeyExt,Sig,Ver) be an IBS
and consider games UF-CMA,UF-naCMA given in Fig. 1. We say that IBS
is UF-naCMA secure, if for every ppt adversary A the following advantage is
negligible in λ:

AdvUF-naCMA
A,IBS (λ) := Pr

[
UF-naCMAAIBS(λ)⇒ 1

]
.

We say that IBS is UF-CMA secure, if for every ppt adversary A the following
advantage is negligible in λ:

AdvUF-CMA
A,IBS (λ) := Pr

[
UF-CMAAIBS(λ)⇒ 1

]
.
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Game UF-naCMAAIBS(λ)
01 (Lid,Lm, St)← A(1λ)
02 (mpk,msk)← Setup(1λ)
03 for id ∈ Lid :
04 skid ← KeyExt(msk, id)
05 Lsk := Lsk ∪ {skid}
06 for (id,m) ∈ Lm :
07 σ ← Sig(skid,m)
08 Lsig := Lsig ∪ {σ}
09 (id∗,m∗, σ∗)← AH(St,mpk,Lsk,Lsig)
10 if id∗ ∈ Lid : return 0
11 if (id∗,m∗) ∈ Lm : return 0
12 return Ver(mpk, id∗,m∗, σ∗)

Game UF-CMAAIBS(λ)
13 (mpk,msk)← Setup(1λ)
14 (id∗,m∗, σ∗)← AKey,Sig,H(1λ,mpk)
15 if id∗ ∈ Lid : return 0
16 if (id∗,m∗) ∈ Lm : return 0
17 return Ver(mpk, id∗,m∗, σ∗)

Oracle Key(id)
18 Lid := Lid ∪ {id}
19 return KeyExt(msk, id)

Oracle Sig(id,m)
20 Lm := Lm ∪ {(id,m)}
21 skid ← KeyExt(msk, id)
22 return σ ← Sig(skid,m)

Fig. 1. The games UF-naCMA (left) and UF-CMA (right) for an identity-based
signature scheme IBS and a random oracle H (in the standard model case, the oracle H
is removed).

3 Generic Constructions of Adaptively Secure IBS

In this section we will provide two transformations from non-adaptively se-
cure identity-based signature schemes to adaptively secure ones. Let IBS′ =
(Setup′,KeyExt′,Sig′,Ver′) be an identity-based signature scheme with identity
space ID and message space M, CHF = (CHGen,CHash,CHColl) a chameleon
hash function, H1 : {0, 1}∗ → ID,H2 : {0, 1}∗ → M random oracles and
` = `(λ) ∈ N. We define new identity-based signature schemes IBS in Fig. 2 and
IBSROM in Fig. 5. Note that the first transformation works in the standard model,
whereas the second one uses random oracles. The reason why we also introduce
this second transformation is that our non-adaptively secure construction from
lattices uses random oracles already, so we can use the second transformation
which is more efficient and without relying on additional primitives such as
chameleon hash functions.

3.1 Transformation in the Standard Model

Here we will show that if IBS′ is non-adaptively secure and CHF is a collision-
resistant chameleon hash, then IBS, defined in Fig. 2, is adaptively secure. It is
clear that if IBS′ is ρ-complete, then IBS is ρ-complete as well.

Theorem 1. Let IBS′ be an identity-based signature scheme and CHF be an
εtrap-chameleon hash function. If IBS′ is UF-naCMA secure and CHF is collision
resistant, then IBS is UF-CMA secure. In particular, for every algorithm A making
at most QS signing queries and QC secret key queries there are algorithms B1
and B2 such that

AdvUF-CMA
A,IBS (λ) ≤ Advcoll

B1,CHF(λ) + AdvUF-naCMA
B2,IBS′ (λ) + (QC + 2QS)εtrap.
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Alg Setup(1λ)
01 (hk, td)← CHGen(1λ)
02 (mpk′,msk′)← Setup′(1λ)
03 mpk := (mpk′, hk),msk := msk′
04 return (mpk,msk)

Alg KeyExt(msk, id)
05 r ← Rhk
06 id′ := CHash(hk, id; r)
07 sk′id ← KeyExt′(msk′, id′)
08 return (r, sk′id)

Alg Sig(skid,m)
09 let skid = (r, sk′id)
10 s← Rhk
11 σ′ ← Sig′(sk′id,CHash(hk,m; s))
12 return (r, s, σ′)

Alg Ver(mpk, id,m, σ)
13 let σ = (r, s, σ′)
14 id′ := CHash(hk, id; r)
15 m′ := CHash(hk,m; s)
16 return Ver′(mpk′, id′,m′, σ′)

Fig. 2. Our adaptively secure IBS = (Setup,KeyExt,Sig,Ver) for a given non-adaptively
secure IBS′ = (Setup′,KeyExt′, Sig′,Ver′) and a chameleon hash function CHF =
(CHGen,CHash,CHColl).

and T(B1) ≈ T(A),T(B2) ≈ T(A).

Proof. We prove the statement via a games G0 and G1 and reductions B1 and
B2. Games G0,G1 are formally presented in Fig. 3. In every game i ∈ {0, 1},
we denote the advantage of adversary A as Advi(A) := Pr

[
GAi ⇒ 1

]
. Game

G0 is the original game UF-CMA, hence we aim to bound Adv0(A). Game G1

Game G0,G1

01 (hk, td)← CHGen(1λ)
02 (mpk′,msk′)← Setup′(1λ)
03 mpk := (mpk′, hk),msk := msk′
04 (id∗,m∗, (r∗, s∗, σ∗))← AKey,Sig(mpk)
05 if id∗ ∈ Lid : return 0
06 if (id∗,m∗) ∈ Lm : return 0
07 id∗h := CHash(hk, id∗; r∗)
08 m∗h := CHash(hk,m∗; s∗)
09 if ∃(id′, id, r) ∈ Hid : id∗h = id′ :
10 bad1 = 1, return 0
11 if ∃((id′, id, r), (m′,m, s)) ∈ Hm :
12 id∗h = id′ ∧m∗h = m′ :
13 bad2 = 1, return 0
14 return Ver(mpk, id∗,m∗, σ∗)

Oracle Key(id)
15 Lid := Lid ∪ {id}
16 r ←Rhk, id′ := CHash(hk, id; r)
17 sk′id ← KeyExt′(msk′, id′)
18 x := (id′, id, r)
19 Hid := Hid ∪ {x}
20 return (r, sk′id)

Oracle Sig(id,m)
21 Lm := Lm ∪ {(id,m)}
22 r ←Rhk, id′ := CHash(hk, id; r)
23 sk′id ← KeyExt′(msk′, id′)
24 s←Rhk,m′ := CHash(hk,m; s)
25 σ′ ← Sig′(sk′id,m′)
26 x := ((id′, id, r), (m′,m, s))
27 Hm := Hm ∪ {x}
28 return (r, s, σ′)

Fig. 3. Games G0 and G1 in the proof of Thm. 1. The shaded statements are only
executed in G1.

keeps track of the hashed identities and messages for all key and signing queries.
That is, it holds lists Hm and Hid such that (id′, id, r) ∈ Hid means that the
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adversary asked for a secret key for identity id and when answering the query,
the game hashed id to id′ using r, i.e. id′ = CHash(hk, id; r). In a similar way, a
tuple ((id′, id, r), (m′,m, s)) is in Hm if in some signing query, id was hashed to id
and m was hashed to m′ using randomness r, s respectively. After obtaining A’s
forgery (id∗,m∗, (r∗, s∗, σ∗)), the game checks additional conditions and returns
0 if one of them holds. These are modeled as the events bad1, bad2. Setting
bad := bad1 ∨ bad2 we can bound the difference of both games by

|Adv0(A)− Adv1(A)| ≤ Pr [bad].

Next, consider the definition of bad1:

bad1 := (∃(id′, id, r) ∈ Hid : CHash(hk, id∗; r∗) = id′),

which implies that there is a collision

CHash(hk, id∗; r∗) = id′ = CHash(hk, id; r).

This collision is non-trivial, as id∗ /∈ Lid and hence id∗ 6= id. Similarly, a non-trivial
collision can be found if bad2 occurs. Simulating G1 and checking which collision
occurs can be done efficiently without the knowledge of the hash trapdoor td,
hence we have a direct reduction B1 that finds a collision for given hk if bad holds
true. Clearly the running time of B1 is dominated by running A once. We see
that

Pr [bad] ≤ Advcoll
B1,CHF(λ).

Finally, we bound the advantage of A in game G1 by a reduction B2 playing
the game UF-naCMA for the scheme IBS′. The reduction makes use of the
trapdoor td and is formally presented in Fig. 4. Reduction B2 chooses a chameleon
hash key and a trapdoor for it and then hashes QS many arbitrary values (in
our presentation: 0) using randomness ri, si to hash values id′i,m′i. These hash
values will then be given to the UF-naCMA challenger as the (non-adaptive)
signing queries. B2 will then get a public key mpk′ and the signatures σ′i for these
queries. Afterwards, when A issues the i-th (adaptive) signature query for the
pair (id,m), the reduction uses its trapdoor to find randomness r and s, such
that CHash(hk, id; r) = id′i and CHash(hk,m; s) = m′i, i.e.

r ← CHColl(hk, td, 0, ri, id), s← CHColl(hk, td, 0, si,m).

Then the reduction can simply return (r, s, σ′i), which is correct, by definition
of the scheme. A similar collision strategy is applied to handle the adaptive
secret key queries after non-adaptively obtaining secret keys. After obtaining A’s
forgery (id∗,m∗, (r∗, s∗, σ∗)), B2 checks all the winning conditions and outputs
(CHash(hk, id∗; r∗),CHash(hk,m∗; s∗), σ∗). It follows from the properties of the
chameleon hash function that this collision finding using the trapdoor and
honest signing are statistically close. To be precise, the statistical distance
between G1 and the game simulated by B2 can be bounded by (QC + 2QS)εtrap,
as B2 applies CHColl once per secret key query and twice per signing query.
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Alg B2(1λ)
01 (hk, td)← CHGen(1λ)
02 for i ∈ [QS ] :
03 si ←Rhk
04 m′ := CHash(hk, 0; si)
05 ri ←Rhk
06 id′ := CHash(hk, 0; ri)
07 Lm′ := Lm′ ∪ {(id′,m′)}
08 for i ∈ [QC ] :
09 r̄i ←Rhk
10 id′ := CHash(hk, 0; r̄i)
11 Lid′ := Lid′ ∪ {id′}
12 St := {hk, td, (r̄i)i, (si, ri)i}
13 return (Lid′,Lm′, St)

Oracle Key(id)
14 ctrkey := ctrkey + 1
15 i := ctrkey
16 Lid := Lid ∪ {id}
17 r ← CHColl(hk, td, 0, r̄i, id)
18 x := (CHash(hk, id; r), id, r)
19 Hid := Hid ∪ {x}
20 return (r, sk′i)

Alg B2(St,mpk′, {sk′i}i, {σ′i}i)
21 mpk := (mpk′, hk)
22 (id∗,m∗, (r∗, s∗, σ∗))← AKey,Sig(mpk)
23 if id∗ ∈ Lid : return 0
24 if (id∗,m∗) ∈ Lm : return 0
25 id∗h := CHash(hk, id∗; r∗)
26 m∗h := CHash(hk,m∗; s∗)
27 if ∃(id′, id, r) ∈ Hid : id∗h = id′ :
28 bad1 = 1, return 0
29 if ∃((id′, id, r), (m′,m, s)) ∈ Hm :
30 id∗h = id′ ∧m∗h = m′ :
31 bad2 = 1, return 0
32 return (id∗h,m∗h, σ∗)

Oracle Sig(id,m)
33 ctrsig := ctrsig + 1, i := ctrsig
34 Lm := Lm ∪ {(id,m)}
35 r ← CHColl(hk, td, 0, ri, id)
36 s← CHColl(hk, td, 0, si,m)
37 id′ := CHash(hk, id; r)
38 m′ := CHash(hk,m; s)
39 x := ((id′, id, r), (m′,m, s))
40 Hm := Hm ∪ {x}
41 return (r, s, σ′i)

Fig. 4. Reduction B2 in the proof of Thm. 1 simulating game G1 for adversary A and
playing the game UF-naCMA for the scheme IBS′.

Let us now argue that B2 wins the game UF-naCMA, assuming A wins. By
definition of the verification algorithm of the scheme, if A outputs a valid
signature (r∗, s∗, σ∗) for message m∗ and id∗, then σ∗ is a valid signature for
identity CHash(hk, id∗; r∗) and message CHash(hk,m∗; s∗) with respect to IBS′.
Hence we only need to check freshness: For the sake of contradiction, assume
the secret key of CHash(hk, id∗; r∗) was (non-adaptively) queried by B2. Then
there is some i ∈ [QC ] such that CHash(hk, id∗; r∗) = CHash(hk, 0; r̄i). The way
B2 answers signature queries tells us that (CHash(hk, 0; r̄i), id, r) ∈ Hid for the
i-th key query id and some randomness r. This is exactly the definition of event
bad1, which we ruled out before. An analogous argument using bad2 shows that
(CHash(hk, id∗; r∗),CHash(hk,m∗; s∗)) was not queried by B2. Thus, we have

Adv1(A) ≤ negl(λ) + AdvUF-naCMA
B2,IBS′ (λ).

Finally, the running time of B2 is dominated by evaluating the polynomial time
chameleon hash and running adversary A. ut
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3.2 Transformation in the Random Oracle Model

Next, we will show that if IBS′ is non-adaptively secure and ` ∈ ω(log λ), then
IBSROM, defined in Fig. 5, is adaptively secure. Clearly, if IBS′ is ρ-complete, then
IBSROM is also ρ-complete.

Alg KeyExt(msk, id)
01 r $← {0, 1}`, id′ ← H1(id, r)
02 return (r,KeyExt′(msk′, id′))

Alg Sig(skid = (r, sk′id),m)
03 s $← {0, 1}`,m′ ← H2(m, s)
04 return (r, s,Sig′(sk′id,m′))

Alg Ver(mpk, id,m, σ)
05 let σ = (r, s, σ′)
06 id′ ← H1(id, r)
07 m′ ← H2(m, s)
08 v := Ver′(mpk′, id′,m′, σ′)
09 return v

Fig. 5. Our adaptively secure IBSROM = (Setup := Setup′,KeyExt,Sig,Ver) for a non-
adaptively secure IBS′ = (Setup′,KeyExt′, Sig′,Ver′) with random oracles H1,H2 and a
natural number ` = `(λ).

Theorem 2. Let IBS′ be an identity-based signature scheme, H1 : {0, 1}∗ →
ID,H2 : {0, 1}∗ → M be random oracles and ` = `(λ) ∈ ω(log(λ)). If IBS′
is UF-naCMA secure, then IBSROM is UF-CMA secure. In particular, for every
algorithm A making at most QS signing queries, QC secret key queries and QH
hash queries (including the indirect ones induced by singing and key queries)
there is an algorithm B such that T(B) ≈ T(A) and

AdvUF-CMA
A,IBSROM

(λ) ≤ AdvUF-naCMA
B,IBS′ (λ) + (QC + 2QS)QH2` + QC

|ID|
+ QS
|ID||M|

.

Proof. We will sketch the proof via games G0,G1,G2 and denote the correspond-
ing advantage of A in Gi by Advi(A) := Pr

[
GAi ⇒ 1

]
. Game G0 is the original

game UF-CMA.
Game G1 holds a variable bad0 which is set to 1 whenever the hash value

H1(id, r) or H2(m, s) in a signing query or a secret key query already has been
defined. The game aborts if this variable is set. Thus it is clear that

|Adv0(A)− Adv1(A)| ≤ Pr [bad0].

To analyze the probability of this event, we define events badkey,i, i ∈ [QC ]
indicating that bad0 was set to true in the i-th key query. Similarly we define the
events badsig,id,i and badsig,m,i for i ∈ [QS ]. The probabilities for these events
can be bounded by QH/2` and we get

Pr [bad0] ≤
∑
i∈[QC ]

Pr [badkey,i] +
∑
i∈[QS ]

(Pr [badsig,id,i] + Pr [badsig,m,i])

≤ (QC + 2QS)QH2` .
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In game G2 we add additional bad events bad1, bad2 (these are similar to the
events in the proof of Thm. 1). If either of them occurs, the game will return
0. The game holds lists Hm and Hid such that (id′, id, r) ∈ Hid means that the
adversary asked for a secret key for identity id and when answering the query,
the game hashed id to id′ using r, i.e. id′ = H1(id; r). In a similar way, a tuple
((id′, id, r), (m′,m, s)) is in Hm if in some signing query, id was hashed to id and m
was hashed to m′ using randomness r, s respectively. After obtaining A’s forgery
(id∗,m∗, (r∗, s∗, σ∗)), the game checks if the events occur:

bad1 := (∃(id′, id, r) ∈ Hid : H1(id∗, r∗) = id′)
bad2 := (∃((id′, id, r), (m′,m, s)) ∈ Hm : H1(id∗, r∗) = id′ ∧ H2(m∗, s∗) = m′).

Similar to the corresponding step in the proof of Thm. 1, it is easy to see that
the events imply collisions for H1 or H2. As Hid has QC entries, the probability
of bad1 can be upper bounded by QC/|ID|. Similarly, the probability of bad2
can be upper bounded by QS(1/|M| · 1/|ID|) and we obtain

|Adv1(A)− Adv2(A)| ≤ Pr [bad1 ∨ bad2] ≤ QC
|ID|

+ QS
|ID||M|

.

Finally, we bound Adv2(A) by a reduction B playing the game UF-naCMA
for the scheme IBS′. Reduction B prepares all the variables needed to simulated
G2 and then samples randomly

(id′i,m′i) $← ID ×M, id′′j $← ID,

for all i ∈ [QS ], j ∈ [QC ]. Then it sends these to its challenger and obtains the
public key mpk′ as well as signatures σ′i and secret keys sk′j for these identities
and messages. To answer the j-th key query id, B samples r $← {0, 1}`, checks
for the event bad as G2 does and programs the random oracle H1 at (id, r) to be
id′′j . It then returns sk′j . This programming can be done without contradicting
previous programming as we exactly ruled out that case by definition of bad. A
similar programming strategy is applied for signing queries, programming both
H1 and H2. In the end, after obtaining A’s forgery (id∗,m∗, (r∗, s∗, σ∗)), reduction
B simply applies random oracle to these values and outputs its own forgery

(H1(id∗, r∗),H2(m∗, s∗), σ∗).

Our definition of events bad1, bad2 makes sure that this forgery is fresh. Then it
is clear that the running time of B is dominated by running A and we have

Adv2(A) ≤ AdvUF-naCMA
B,IBS′ (λ).

ut

4 Instantiation from SIS

In this section we construct a non-adaptively secure identity-based signature
scheme IBSSIS based on the SIS assumption. Combined with the transformation
presented in the previous section, we obtain an adaptively secure one.
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4.1 Background on Lattices

For anym-dimensional lattice (i.e. discrete additive subgroup of Rm) Λ and vector
c ∈ Rm we denote the discrete Gaussian distribution with parameter s > 0 over
the coset c + Λ by Dc+Λ,s. More precisely, this is the distribution proportional to
ρs(x) := exp(−π‖x‖2/s2) restricted to the coset c + Λ. Let A ∈ Zn×mq ,m > n be
a matrix. It defines an m-dimensional q-ary lattice and lattice cosets as follows:

Λ⊥q (A) := {z ∈ Zm : Az = 0 mod q}, Λ⊥u (A) := {z ∈ Zm : Az = u mod q}.

We recall some standard facts about these lattices. For simplicity, throughout
the paper we just deal with a prime modululs q. However, the techniques can be
generalized to composite q as well [46]. The following lemma is obtained from
Lemma 2.9 in [45] by setting t =

√
m+

√
n ∈ ω(

√
logm) and hence doubling the

constant.

Lemma 1. There is some univeral constant C0 > 0 such that the following holds:
Let n,m ∈ N and X ∈ Rn×m be a random subgaussian matrix wth parameter s.
Then we have s1(X) ≤ C0 · s · (

√
m+

√
n) except with negligible probability.

The following facts are from [2,47,50,24,25] and can be obtained by using Lemmas
5.1, 5.2 and 5.3 in [24] and Lemma 4.4 in [47].

Lemma 2. Let n,m ∈ N, q ∈ P at least polynomial in n, m ≥ 2n log q. Consider
any ω(

√
logm) function and s ≥ ω(

√
logm). Then for all but a negligible (in

n) fraction of all A ∈ Zn×mq the following distribution is statistically close to
uniform over Znq : {Ae | e← DZm,s}. Furthermore, the conditional distribution
of e← DZm,s given u = Ae mod q is exactly DΛ⊥u (A),s.

Lemma 3. Let n ∈ N, q ∈ P and m ≥ 2n log q. Consider any ω(
√

logm)
function and s ≥ ω(

√
logm). Then for all but an at most q−n fraction of all

A ∈ Zn×mq and any vector u ∈ Znq , we have Pr
[
‖x‖ > s

√
m | x← DΛ⊥u (A),s

]
≤

2−m+1.

Lemma 4. Let n ∈ N, q ∈ P and m ≥ 2n log q. Consider any ω(
√

logm)
function and s ≥ ω(

√
logm). Then for all but an at most q−n fraction of all

A ∈ Zn×mq and any vector u ∈ Znq , we have H∞
(
DΛ⊥u (A),s

)
≥ m− 1.

Throughout this paper, we let G be the fixed gadget matrix introduced in [46].
Let n,m, q ∈ N,m ≥ ndlog qe and A ∈ Zn×mq be a matrix. A trapdoor for A
is a matrix R ∈ Z(m−ndlog qe)×ndlog qe such that A[−Rt | Indlog qe]t = G. The
next lemma summarizes the results in [46]. In particular, we obtained the precise
statements from Section 5 of [46], we use the statistical instantiation of trapdoors
and the constant is C1 =

√
s1(ΣG) + 2 ≤ 3 (see [46]).

Lemma 5. Let C0 be the constant from Lem. 1. There are ppt algorithms
GenTrap,SampleD and DelTrap and constants C1 ≤ 3 such that for n, q,m ∈
N, q ≥ 2,m ≥ 3n log q, w := ndlog qe and any ω(

√
logn) function the following

holds with overwhelming probability over all random choices:
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– For any s ≥ ω(
√

logn) the algorithm GenTrap(1n, 1m, s, q) outputs matrices
A ∈ Zn×mq ,R ∈ Z(m−w)×w such that A is statistically close to uniform, R
is a trapdoor for A with entries sampled from DZ,s and s1(R) ≤ s · C0 ·
(
√
m− w +

√
w).

– For any matrix A ∈ Zn×mq with trapdoor R, for any u ∈ Znq and any
s ≥ C1 ·

√
s1(R)2 + 1 · ω(

√
logn), the following distribution is statistically

close to DΛ⊥u (A),s:
{z|z← SampleD(A,R,u, s)} .

– For any matrix A ∈ Zn×mq with trapdoor R, any matrix A′ ∈ Zn×wq and
any s ≥ C1 ·

√
s1(R)2 + 1 · ω(

√
logn), DelTrap([A | A′],R, s) outputs a

trapdoor R′ ∈ Zm×wq for [A | A′] with distribution independent of R and
s1(R′) ≤ s ·C0 · (

√
m+
√
w). Further, for s̃ ≥ ω(

√
logn) and under the same

conditions, the following distributions are statistically close:{
(A,A′,R′)

∣∣∣∣(A,R)← GenTrap(1n, 1m, s̃, q),A′ $← Zn×wq ,
R′ ← DelTrap([A | A′],R, s)

}
and{

(A,A′,R′)
∣∣∣(A,R)← GenTrap(1n, 1m, s̃, q),R′ ← Dm×w

Z,s ,A′ := AR′ + G
}
.

Definition 5 (Short Integer Solution Assumption (SIS)). Let λ ∈ N, n =
n(λ),m = m(λ), β = β(λ) ∈ N and q = q(n) be prime number. We say that the
SISn,m,q,β assumption holds, if for every ppt algorithm A the following advantage
is negligible in λ:

AdvSISn,m,q,β
A (λ) := Pr

[
Az = 0 ∧ z 6= 0 ∧ ‖z‖ ≤ β | A $← Zn×mq , z← A(A)

]
.

The hardness of SIS for certain parameters is supported by several worst-case to
average-case reductions, see [2,47,25].

4.2 Construction

Now we are ready to present our construction. The scheme is presented in Fig. 6.
Its main parameters are SIS parameters n ∈ N, q ∈ P,m ≥ 3n log q, β > 0. We
also need Gaussian parameters s0, s, s

′, s′′, s̃ ≥ ω(
√

logm) (needed for regularity,
Lem. 2), where the parameter s̃ is only used in the proof, s0, s, s

′, s′′ satisfy the
conditions for Lem. 5 and β is large enough:

s ≥ C1

√
s2

0C
2
0 (
√
m− ndlog qe+

√
ndlog qe)2 + 1 · ω(

√
logn)

s′ ≥ C1

√
s2C2

0 (
√
m+

√
ndlog qe)2 + 1 · ω(

√
logn)

s′′ ≥ C1

√
s′2C2

0 (
√
m+ ndlog qe+

√
ndlog qe)2 + 1 · ω(

√
logn)

β ≥ (1 + 2C0s̃(
√
m+

√
ndlog qe))s′′

√
m+ 2ndlog qe.
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Alg Setup(1λ)
01 set parameters as in the text.
02 (A,TA)← GenTrap(1n, 1m, s0, q)
03 mpk := A ∈ Zn×mq ,msk := TA
04 return (mpk,msk)

Alg Sig(skid,m)
05 H1 ← H1(mpk, id)
06 H2 ← H2(mpk, id,m)
07 Fid,m := [A | H1 | H2]
08 Tid,m ← DelTrap(Fid,m,Tid, s

′)
09 z← SampleD(Fid,m,Tid,m,0, s′′)
10 return σ := z

Alg KeyExt(msk, id)
11 H1 ← H1(mpk, id)
12 Fid := [A | H1]
13 Tid ← DelTrap(Fid,TA, s)
14 return skid := Tid

Alg Ver(mpk, id,m, z)
15 H1 ← H1(mpk, id)
16 H2 ← H2(mpk, id,m)
17 Fid,m := [A | H1 | H2]
18 if z = 0 ∨ Fid,mz 6= 0 : return 0
19 return ‖z‖ ≤ s′′

√
m+ 2ndlog qe

Fig. 6. The identity-based signature scheme IBSSIS = (Setup,KeyExt, Sig,Ver), where
H1 : {0, 1}∗ → Zn×ndlog qe

q ,H2 : {0, 1}∗ → Zn×ndlog qe
q are random oracles.

Lemma 6. The identity-based signature scheme IBSSIS is ρ-complete, where
ρ ≥ 1− negl(λ).

Proof. Consider keys (mpk = A,msk = TA) ∈ Setup(1λ), an arbitrary identity
id and message m. Let skid ∈ KeyExt(msk, id) and z ∈ Sig(skid,m). By defini-
tion of KeyExt we have that skid = Tid is a trapdoor for the matrix Fid = [A |
H1(mpk, id)], which is a prefix of Fid,m = [A | H1(mpk, id) | H2(mpk, id,m)]. Hence
Tid,m as used in the signature scheme is a trapdoor for Fid,m, by Lem. 5 and the
conditions of parameters. The same Lemma tells us that z is distributed statis-
tically close to DΛ⊥q (Fid,m),s′′ , which implies Fid,mz = 0 and with overwhelming
probability (by Lem. 3) ‖z‖ ≤ s′′ ·

√
m+ 2ndlog qe, which makes Ver accept. ut

Theorem 3. The scheme IBSSIS is an UF-naCMA secure identity-based signature
scheme, under the SISn,m,q,β assumption. In particular, for every ppt algorithm
A there is a ppt algorithm B such that

AdvUF-naCMA
A,IBSSIS

(λ) ≤ AdvSISn,m,q,β
B (λ) + negl(λ)

and T(B) ≈ T(A).

Proof. The proof is via a reduction B, formally given in Fig. 7. The idea is as
follows: The given SIS matrix A is set as the master public key mpk := A. For
any identity id ∈ Lid, for which the adversary queries the secret key, B programs
the random oracle H1(mpk, id) := AR̂mpk,id + G, where R̂mpk,id ← D

m×ndlog qe
Z,s is

short. Hence, R̂mpk,id is a trapdoor for Fid := [A | H1(mpk, id)] and B can return
it as skid. Note that by definition of the non-adaptive security game, A did not
query the random oracle before, hence programming is possible. For all other
identities, the hash value will be programmed to H1(mpk, id) := AR̂mpk,id. A
similar programming policy is applied for H2: For every pair (id,m) ∈ Lm, for
which the adversary wants to know a signature, the random oracle is programmed
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Alg B(A ∈ Zn×mq )
01 (Lid,Lm, St)← A(1λ)
02 mpk := A
03 for id ∈ Lid :
04 R̂mpk,id ← D

m×ndlog qe
Z,s

05 h[1,mpk, id] := AR̂mpk,id + G
06 skid := R̂mpk,id
07 Lsk := Lsk ∪ {skid}

08 for (id,m) ∈ Lm :
09 Rmpk,id,m ← D

m×ndlog qe
Z,s

10 h[2,mpk, id,m] := ARmpk,id,m + G
11 B := H1(mpk, id)
12 C := h[2,mpk, id,m]
13 F′id,m := [A | C | B]
14 Fid,m := [A | B | C]
15 T′id,m ← DelTrap(F′id,m,Rmpk,id,m, s

′)
16 z← SampleD(F′id,m,T′id,m,0, s′′)
17 zid,m := [zt1 | zt3 | zt2]t
18 Lsig := Lsig ∪ {zid,m}

19 (id∗,m∗, z∗)← AH1,H2 (St,mpk,Lsk,Lsig)

20 if id∗ ∈ Lid ∨ (id∗,m∗) ∈ Lm :
21 return ⊥
22 if z∗ > s′′

√
m ∨ z∗ = 0 :

23 return ⊥
24 B := AR̂mpk,id∗ ,C := ARmpk,id∗,m∗

25 Fid∗,m∗ := [A | B | C]
26 if Fid∗,m∗z∗ 6= 0 : return ⊥
27 z := [Im | R̂mpk,id∗ | Rmpk,id∗,m∗ ]z∗
28 return z

Oracle H1(mpk, id)
29 if h[1,mpk, id] =⊥:
30 R̂mpk,id ← D

m×ndlog qe
Z,s̃

31 h[1,mpk, id] := AR̂mpk,id
32 return h[1,mpk, id]

Oracle H2(mpk, id,m)
33 if h[2,mpk, id,m] =⊥:
34 Rmpk,id,m ← D

m×ndlog qe
Z,s̃

35 h[2,mpk, id,m] := ARmpk,id,m
36 return h[2,mpk, id,m]

Fig. 7. Reduction B, solving the SIS problem using an adversary A against the
UF-naCMA security of IBSSIS.

as H2(mpk, id,m) := ARmpk,id,m +G for Rmpk,id,m ← D
m×ndlog qe
Z,s . Using Rmpk,id,m

as a trapdoor for [A | H2(mpk, id,m)] the reduction can compute a trapdoor
for F′id,m := [A | H2(mpk, id,m) | H1(mpk, id)], sample from DΛ⊥q (F′id,m),s′′ and
permute the resulting vector to get a signature as in the real scheme. Again,
the random oracle value is not yet defined and can be programmed and other
queries are programmed as H2(mpk, id,m) := ARmpk,id,m. In the end A will
return a forgery (id∗,m∗, z∗). We assume that A queried all related random
oracle queries H1(mpk, id∗) and H2(mpk, id∗,m∗) (otherwise we can build a new
adversary making the queries after running A and having the same success
probability). If A is successful, then id∗ /∈ Lid and (id∗,m∗) /∈ Lm, which implies
that

0 = Fid∗,m∗z∗ = [A | AR̂mpk,id∗ | ARmpk,id∗,m∗ ]z∗,

and hence B can return

z := [Im | R̂mpk,id∗ | Rmpk,id∗,m∗ ]z∗.

Note that the running time of the reduction is dominated by running A. Let
us now look at the details and show that the simulation is perfect (up to
negligible statistical distance) and that z has the correct length and is not zero.
As s, s̃ > ω(

√
logm) and m ≥ 2n log q, Lem. 2 shows that AR is statistically

close to uniform for A $← Zn×mq and R ← D
m×ndlog qe
Z,κ for κ ∈ {s, s̃}, hence
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the simulation of H1 and H2 is statistically close to the real game. Next, the
distribution of the secret keys skid = R̂mpk,id is statistically close to the real
game, which can be obtained by applying the properties of DelTrap from Lem. 5.
Further, Rmpk,id,m is a trapdoor for [A | ARmpk,id,m + G], which is a prefix of
F′id,m (as defined in Fig. 7) and thus the signature output by B is statistically
close to DΛ⊥q (Fid,m),s′′ , as honest signatures are. It remains to show that z is a
suitable solution for SIS: To see that z is not zero, write z∗ = [z∗1 | z∗2]t where
z∗1 ∈ Zmq , z∗2 ∈ Z2ndlog qe

q and note that

z = z∗1 + [R̂mpk,id∗ | Rmpk,id∗,m∗ ]z∗2.

Now, if z∗2 = 0, then z 6= 0 as z∗1 6= 0. Otherwise there is some non-zero
component z∗2,j 6= 0, j ∈ [2ndlog qe]. Denote the columns of [R̂mpk,id∗ | Rmpk,id∗,m∗ ]
by ri ∈ Zmq , i ∈ [2ndlog qe]. Then z = 0 implies that

− 1
z∗2,j

(z∗1 +
∑
i 6=j

z∗2,iri) = rj .

Further, note that the only information about rj that A gets is a column of
the hash value H1(mpk, id∗) = AR̂mpk,id∗ (if j ≤ ndlog qe) or H2(mpk, id∗,m∗) =
ARmpk,id∗,m∗ (otherwise). Let u denote that column. Then from A’s view, rj is
distributed as DΛ⊥u (A),s̃. This distribution has a large min-entropy (with over-
whelming probability over A $← Zn×mq ) by Lem. 4, and hence the probability that
z = 0 is negligible. Finally, by Lem. 1 we have that s1(R̂mpk,id∗), s1(Rmpk,id∗,m∗) ≤
C0 · s̃ · (

√
m+

√
ndlog qe) with overwhelming probability. Hence

‖z‖ ≤ ‖z∗1‖+ ‖[R̂mpk,id∗ | Rmpk,id∗,m∗ ]z∗2‖

≤ (1 + 2C0s̃(
√
m+

√
ndlog qe))s′′

√
m+ 2ndlog qe ≤ β,

which finishes the proof. ut
Let us note the key and signature sizes (in bits) of our (non-adaptive) scheme :

|mpk| = n ·m · dlog(q)e, |msk| = (m− ndlog(q)e) · n · dlog(q)e2,
|skid| = m · n · dlog(q)e2, |σ| = (m+ 2 · n · dlog(q)e) · dlog(q)e.

In order to get concrete parameters, we can use an estimation that in every
delegation, it is enough (up to constants) that the Gaussian width multiplies
with

√
m · ω(

√
logm). For the worst-case to average-case reductions [47,25] to

work, we need to choose q ≥ β · poly(n), where poly(n) can grow roughly as
√
n.

One obtains that the following example instantiation satisfies all our conditions
for large enough n and n4 ≤ q ≤ n5 prime:

m := 3n log q, s0 := s̃ := ω(
√

logm),

s := Ĉ ·m1/2 · ω(
√

logm)2, s′ := Ĉ2 ·m · ω(
√

logm)3,

s′′ := Ĉ3 ·m3/2 · ω(
√

logm)4, β := C̃ · n5/2 · log(n)5/2 · ω(
√

logm)5,

where Ĉ := 4C0C1 and C̃ := 48 · 33/2 · 55/2 · Ĉ3C0 are constants chosen such that
the estimation is correct.
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5 Instantiation from Ring-SIS

In this section we translate our non-adaptively secure identity-based signature
scheme IBSSIS based on the SIS assumption to the ring setting. We obtain a
non-adaptively secure identity-based signature scheme IBSRSIS based on the RSIS
assumption. Combined with the transformation presented in Section 3 we obtain
an adaptively secure scheme.

5.1 Background on Lattices in the Ring Setting

Before we can introduce our scheme, we need to introduce the ring setting and
lemmas analogous to Lem. 1 to 5 for it. For our presentation, we follow the
setting in [19,20]. Especially, we use a modulus which is a power of 3.

For the rest of this section, we assume that n = 2k ∈ Θ(λ) for k ∈ N and
define the ring R = Z[X]/(Xn + 1), which is the ring of integers in the 2n-th
cyclotomic number field. Further, we assume q = 3h, h ∈ N is a power of 3
polynomial in n and define Rq = R/qR. There is a natural isomorphism of vector
spaces cf : R→ Zn, called the coefficient embedding, with

cf(
n−1∑
i=0

αiX
i) =

 α0
...

αn−1

 .

Further, there is an injective ring homomorphism rot : R → Zn×n that maps
a ∈ R to the matrix representing the linear transformation r 7→ ar. That is, we
define

rot(a) = [cf(a) | · · · | cf(aXn−1)].
Both cf and rot can easily be extended to vectors and matrices over R and to Rq.
The following properties follow easily for all `1, `2 ∈ N, s ∈ R,a,b ∈ R`2 ,R ∈
R`1×`2 :

cf(sa) = rot(a)cf(s), cf(atb) = rot(at)cf(b),
cf(Ra) = rot(R)cf(a), rot(Ra) = rot(R)rot(a).

Further, we use cf and rot to define norms of vectors and matrices over R:

‖r‖ := ‖cf(r)‖ for r ∈ R,
s1(R) := s1(rot(R)) for R ∈ R`1×`2 .

We also introduce a distribution of ring elements, vectors and matrices analogous
to the discrete Gaussian distribution over Z:

DR,s := cf−1(DZn,s).

Finally, for a ∈ R`, u ∈ R we define q-ary lattices over R similar to the q-ary
lattices over Z:

Λ⊥q (at) := {z ∈ R` : atz = 0 mod q}, Λ⊥u (at) := {z ∈ R` : atz = u mod q}.
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Next, we introduce lemmas analogous to Lem. 1 to 5. The first lemma is stated
as Fact 6 in [20]. For all lemmas, we assume that n,R, q are as above.

Lemma 7. There is some constant C0,r such that the following holds: Let `1, `2 ∈
N, s > 0 and R ← D`1×`2

R,s . Then we have s1(R) ≤ C0,r · s
√
n · (
√
`1 +

√
`2 +

ω(
√

logn)) except with negligible probability.

The first part of the next lemma is literally stated in [20], Lemma 7. For the
second part, one can follow the proof in [24], Lemma 5.2 using rot(at).

Lemma 8. Let ` ∈ N, ` ≥ 2dlog qe+ 2. Consider any ω(
√

log `n) function and
s ≥ ω(

√
log `n). Then for all but a negligible (in n) fraction of all a ∈ R`q the

following distribution is statistically close to uniform over Rq: {ate | e← D`
R,s}.

Furthermore, the conditional distribution of e← D`
R,s given u = ate mod q is

exactly DΛ⊥u (at),s.

The next lemma follows easily by applying cf to standard Gaussian tail bounds
over Z, see e.g. [47,24].

Lemma 9. Consider ` ∈ N and any ω(
√

log `n) function and s ≥ ω(
√

log `n).
Then we have

Pr
[
‖x‖ > s

√
`n | x← D`

R,s

]
≤ negl(λ).

We can combine the previous two lemmas to obtain the following lemma.

Lemma 10. Let ` ∈ N, ` ≥ 2dlog qe+ 2. Consider any ω(
√

log `n) function and
s ≥ ω(

√
log `n). Then for all but a negligible (in n) fraction of all a ∈ R`q and

any u ∈ Rq, we have

Pr
[
‖x‖ > s

√
`n | x← DΛ⊥u (at),s

]
≤ negl(λ).

The next lemma is stated in [20], Corollary 8.

Lemma 11. Let ` ∈ N, ` ≥ 2dlog qe + 3. Consider any ω(
√

log `n) function
and s ≥ ω(

√
log `n). Then with overwhelming probability over the choice at $←

R1×`
q the following holds: For any u ∈ Rq and any v ∈ R` \ {0} we have

H∞
(
vtDΛ⊥u (at),s

)
≥ Ω(n).

Next, we introduce trapdoors [46] for lattices in the ring setting. Contrary to our
presentation of trapdoors in the plain setting, we use base 3, as in [19,20]. First,
we define a ring analogue of the gadget matrix G:

gt := (1, 3, 9, . . . , 3h−1) ∈ R1×h,

where q = 3h. If G is the standard gadget matrix with base 3, then it is easy to
see that

rot(gt) = GP

for some permutation matrix P ∈ {0, 1}hn×hn. For ` ≥ hn, we say that a matrix
R ∈ R(`−h)×h is a trapdoor for at ∈ R1×` if at[−Rt | Inh] = gt. Note that this
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also implies that in the plain setting rot(R) ∈ Z(`n−hn)×hn
q is a trapdoor for

rot(at) ∈ Z×hnq with respect to gadget matrix GP. The trapdoor algorithms in
[46] are not sensitive to column permutations. Hence, we can use them to obtain
the following lemma, summarizing trapdoors in the ring setting, where the claims
about GenTrapR and DelTrapR follow by using Lem. 8. The statements can also
be found in [20], Section 2.4.

Lemma 12. Let C0,r be the constant from Lem. 7. There are ppt algorithms
GenTrapR,SampleDR and DelTrapR and constants C1,r ≤ 3 such that for ` ≥
2dlog qe+ 2 and any ω(

√
log `n) function the following holds with overwhelming

probability over all random choices:
– For any s ≥ ω(

√
log `n) the algorithm GenTrapR(1n, 1`, s, q) outputs at ∈

R1×`
q ,R ∈ R(`−h)×h such that at is statistically close to uniform, R is a

trapdoor for at with entries sampled from DR,s and s1(R) ≤ C0,r · s
√
n ·

(
√
`− h+

√
h+ ω(

√
logn)).

– For any a ∈ R1×`
q with trapdoor R, for any u ∈ Rq and any s ≥ C1,r ·√

s1(R)2 + 1 · ω(
√

log `n), the following distribution is statistically close to
DΛ⊥u (at),s: {

z
∣∣z← SampleDR(at,R, u, s)

}
.

– For any a ∈ R1×`
q with trapdoor R, any matrix a′t ∈ R1×h

q and any s ≥
C1,r ·

√
s1(R)2 + 1 · ω(

√
log `n), DelTrapR([at | a′t],R, s) outputs a trapdoor

R′ ∈ R`×hq for [at | a′t] with distribution independent of R and s1(R′) ≤
C0,r · s

√
n · (
√
`+
√
h+ ω(

√
logn)). Further, for s ≥ ω(

√
log `n) and under

the same conditions, the following distributions are statistically close:{
(at,a′t,R′)

∣∣∣∣(at,R)← GenTrapR(1n, 1`, s, q),a′t $← R1×h
q ,

R′ ← DelTrapR([at | a′t],R, s)

}
and{

(at,a′t,R′)
∣∣∣(at,R)← GenTrapR(1n, 1`, s, q),R′ ← D`×h

R,s ,a
′t := atR′ + gt

}
.

Finally, we present the RSIS assumption.

Definition 6 (Ring Short Integer Solution Assumption (RSIS)). Let λ ∈
N, n = n(λ) = 2k for a k = k(λ), ` = `(λ), β = β(λ) ∈ N and q = q(n). We say
that the RSISn,`,q,β assumption holds, if for every ppt algorithm A the following
advantage is negligible in λ:

AdvRSISn,`,q,β
A (λ) := Pr

[
atz = 0 ∧ z 6= 0 ∧ ‖z‖ ≤ β | at $← R1×`

q , z← A(at)
]
.

Restricting n to be a power of 2 and using the coefficient embedding cf to
define norms is a special case of the more general ring setting. For worst-case to
average-case reductions similar to the plain SIS assumption, see [42,49,43].
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5.2 Construction

Now we can present our scheme IBSRSIS. It makes use of parameters n = 2k ∈
Θ(λ) and q = 3h as above, ` ≥ 2dlog qe + 3, β > 0 and Gaussian parameters
s0, s, s

′, s′′, s̃ ≥ ω(
√

log `n). Note that the parameters β, s̃ are only used in the
security proof. In particular, this allows us to apply Lem. 7 to 11. To apply
Lem. 12 and to make our reduction work, we need

s ≥ C1,r

√
s2

0C0,r
2 · n · (

√
`− h+

√
h+ ω(

√
logn))2 + 1 · ω(

√
log `n)

s′ ≥ C1,r

√
s2C0,r

2 · n · (
√
`+
√
h+ ω(

√
logn))2 + 1 · ω(

√
log `n)

s′′ ≥ C1,r

√
s′2C0,r

2 · n · (
√
`+ h+

√
h+ ω(

√
logn))2 + 1 · ω(

√
log `n)

β ≥ (1 + 2C0,r s̃
√
n(
√
`+
√
h+ ω(

√
logn)))s′′

√
`+ 2h.

The scheme is presented in Fig. 8. As we already translated all lemmas needed
for analysis to the ring setting, the final completeness and security proofs are a
direct translation of the proofs in Section 4.

Alg Setup(1λ)
01 set parameters as in the text.
02 (at,T)← GenTrapR(1n, 1`, s0, q)
03 mpk := at ∈ R1×`

q ,msk := T
04 return (mpk,msk)

Alg KeyExt(msk, id)
05 ht1 ← H1(mpk, id)
06 f tid := [at | ht1] ∈ R1×(`+h)

q

07 Tid ← DelTrapR(f tid,T, s)
08 return skid := Tid

Alg Sig(skid,m)
09 ht1 ← H1(mpk, id),ht2 ← H2(mpk, id,m)
10 f tid,m := [at | ht1 | ht2] ∈ R1×(`+2h)

q

11 Tid,m ← DelTrapR(f tid,m,Tid, s
′)

12 z← SampleDR(f tid,m,Tid,m, 0, s′′)
13 return σ := z

Alg Ver(mpk,m, z)
14 ht1 ← H1(mpk, id),ht2 ← H2(mpk, id,m)
15 f tid,m := [at | ht1 | ht2] ∈ R1×(`+2h)

q

16 if z = 0 ∨ f tid,mz 6= 0 : return 0
17 return ‖z‖ ≤ s′′

√
(`+ 2h)n

Fig. 8. The identity-based signature scheme IBSRSIS = (Setup,KeyExt, Sig,Ver), where
H1 : {0, 1}∗ → R1×h

q ,H2 : {0, 1}∗ → R1×h
q are random oracles.

Lemma 13. The identity-based signature scheme IBSRSIS is ρ-complete, where
ρ ≥ 1− negl(λ).

Proof. Let (mpk = at,msk = T) ∈ Setup(1λ) be a pair of key, let id be an identity
and let m be a message. Further, let skid ∈ KeyExt(msk, id) and z ∈ Sig(skid,m) be
a user secret key and a signature. By Lem. 12 the following hold with overwhelming
probability: We have that skid = Tid is a trapdoor for f tid = [at | H1(mpk, id)],
which is a prefix of f tid,m = [at | H1(mpk, id) | H2(mpk, id,m)]. Thus Tid,m as used
in Sig(skid,m) is a trapdoor for f tid,m, and the conditions of parameters. Further
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Alg B(at ∈ R1×`
q )

01 (Lid,Lm, St)← A(1λ)
02 mpk := at
03 for id ∈ Lid :
04 R̂mpk,id ← D`×h

R,s

05 h[1,mpk, id] := atR̂mpk,id + gt
06 skid := R̂mpk,id
07 Lsk := Lsk ∪ {skid}

08 for (id,m) ∈ Lm :
09 Rmpk,id,m ← D`×h

R,s

10 h[2,mpk, id,m] := atRmpk,id,m + gt
11 bt := H1(mpk, id)
12 ct := h[2,mpk, id,m]
13 f ′tid,m := [at | ct | bt]
14 f tid,m := [at | bt | ct]
15 T′id,m ← DelTrapR(f ′tid,m,Rmpk,id,m, s

′)
16 z← SampleDR(f ′tid,m,T′id,m, 0, s′′)
17 zid,m := [zt1 | zt3 | zt2]t
18 Lsig := Lsig ∪ {zid,m}

19 (id∗,m∗, z∗)← AH1,H2 (St,mpk,Lsk,Lsig)

20 if id∗ ∈ Lid ∨ (id∗,m∗) ∈ Lm :
21 return ⊥
22 if z∗ > s′′

√
(`+ 2h)n ∨ z∗ = 0 :

23 return ⊥
24 bt := atR̂mpk,id∗

25 ct := atRmpk,id∗,m∗

26 f tid∗,m∗ := [at | bt | ct]
27 if f tid∗,m∗z∗ 6= 0 : return ⊥
28 z := [I` | R̂mpk,id∗ | Rmpk,id∗,m∗ ]z∗
29 return z

Oracle H1(mpk, id)
30 if h[1,mpk, id] =⊥:
31 R̂mpk,id ← D`×h

R,s̃

32 h[1,mpk, id] := atR̂mpk,id
33 return h[1,mpk, id]

Oracle H2(mpk, id,m)
34 if h[2,mpk, id,m] =⊥:
35 Rmpk,id,m ← D`×h

R,s̃

36 h[2,mpk, id,m] := atRmpk,id,m
37 return h[2,mpk, id,m]

Fig. 9. Reduction B, solving the RSIS problem using an adversary A against the
UF-naCMA security of IBSRSIS.

z is distributed statistically close to DΛ⊥q (ftid,m),s′′ , which implies f tid,mz = 0 and
with overwhelming probability (by Lem. 10) ‖z‖ ≤ s′′ ·

√
(`+ 2h)n, which makes

Ver accept. ut

Theorem 4. The scheme IBSRSIS is an UF-naCMA secure identity-based sig-
nature scheme, under the RSISn,`,q,β assumption. In particular, for every ppt
algorithm A there is a ppt algorithm B such that

AdvUF-naCMA
A,IBSRSIS

(λ) ≤ AdvRSISn,`,q,β
B (λ) + negl(λ)

and T(B) ≈ T(A).

Proof. The proof follows the corresponding proof in the plain SIS setting. We
present a reduction B in Fig. 9 that solves the RSIS problem using an adversary
A against the UF-naCMA security of IBSRSIS. Note that the running time of B
is dominated by the running time of A. First, we argue that B’s simulation is
statistically close to the real security game and A can not notice B’s barratries.
As s, s̃ and ` are large enough, Lem. 8 implies that with overwhelming probability
over at $← R`q the distribution of atR for R ← D`×h

R,κ , κ ∈ {s, s̃} is statistically
close to uniform over R1×h

q , which implies that B’s simulation of random oracle
queries is statistically close to the real security game. Further Lem. 12 can be
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used as follows. The distribution of user secret keys returned by B is statistically
close to the distribution in the real game, by the last claim of Lem. 12 about
DelTrapR. Also, the way the random oracle is programmed by B implies that
Rmpk,id,m is a trapdoor for [at | atRmpk,id,m + gt]. Thus, the second and third
claim of Lem. 12 show that the signature output by B is statistically close to
DΛ⊥q (ftid,m),s′′ , as honest signatures are. Second, we argue that B can solve the RSIS
problem with overwhelming probability, conditioned on A’s success. To this end,
we have to argue that z is a short non-zero vector that satisfies atz = 0 ∈ Rq. If
(id∗,m∗, z∗) is a valid forgery, then id∗ /∈ Lid and (id∗,m∗) /∈ Lm, which implies
that

0 = f tid∗,m∗z∗ = [at | atR̂mpk,id∗ | atRmpk,id∗,m∗ ]z∗ = at[I` | R̂mpk,id∗ | Rmpk,id∗,m∗ ]z∗,

and thus atz = 0. Further note that z is short: By Lem. 7 we have that
s1(R̂mpk,id∗), s1(Rmpk,id∗,m∗) ≤ C0,r · s̃

√
n · (
√
` +
√
h + ω(

√
logn)) with over-

whelming probability. Hence

‖z‖ ≤ ‖z∗1‖+ ‖[R̂mpk,id∗ | Rmpk,id∗,m∗ ]z∗2‖

≤ (1 + 2C0,r s̃
√
n(
√
`+
√
h+ ω(

√
logn)))s′′

√
`+ 2h ≤ β.

Finally, z 6= 0 can be seen as follows. Let z∗ = [z∗1 | z∗2]t with z∗1 ∈ R`q, z∗2 ∈ R2h
q .

Then we have
z = z∗1 + [R̂mpk,id∗ | Rmpk,id∗,m∗ ]z∗2.

If z∗2 = 0, then z 6= 0 as z∗1 6= 0. So we can assume that z∗2 6= 0 and in particular,
that there is some non-zero component z∗2,j 6= 0, j ∈ [2h]. Denote the columns of
[R̂mpk,id∗ | Rmpk,id∗,m∗ ] by ri ∈ R`q, i ∈ [2h]. Then z = 0 implies that

− 1
z∗2,j

(z∗1 +
∑
i 6=j

z∗2,iri) = rj .

The only information about rj that A gets is a component of the hash value
H1(mpk, id∗) = atR̂mpk,id∗ (if j ≤ h) or H2(mpk, id∗,m∗) = atRmpk,id∗,m∗ (oth-
erwise). Let u ∈ Rq denote that component. Then from A’s view, rj is dis-
tributed as DΛ⊥u (at),s. This distribution has a large min-entropy (with over-
whelming probability over at $← R1×`

q ) by Lem. 11. To be more precise, setting
vt := (1, 0, . . . , 0) ∈ R`, Lem. 11 states that the min-entropy of the first compo-
nent of rj is at least Ω(n). The entropy of the entire rj can not be smaller than
that. Hence the probability that z = 0 is negligible, which finishes the proof. ut
We will now give an example parameter instantiation. Here, we set ` := 3 log q,
note that ω(

√
log `n) = ω(

√
logn), and use the estimation that in every delegation

the Gaussian width multiplies by
√
n · ω(

√
logn)2, up to constants. Note that

compared to the plain SIS setting, this is slightly worse, which results from the
bound in Lem. 7 compared to Lem. 1. Further, we choose q to be a power of 3
with na ≤ q ≤ na+1 for some a ∈ N. Then we obtain

` := 3 log q, s0 := s̃ := ω(
√

logn),
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s := Ĉ · n1/2 · ω(
√

logm)3, s′ := Ĉ2 · n · ω(
√

logm)5,

s′′ := Ĉ3 · n3/2 · ω(
√

logm)7, β := C̃ · n2 · log(n)1/2 · ω(
√

logm)9,

where Ĉ :=
√

2C0,rC1,r and C̃ := 4
√

5(a+ 1)Ĉ3C0,r are constants such that
the estimation is correct, and a is chosen such that na ≥ β · poly(n) and the
worst-case to average-case reductions [42,49,43] apply. Let us summarize the key
and signature sizes (in bits) of the non-adaptively secure scheme IBERSIS:

|mpk| = ` · ndlog(q)e, |msk| = (`− h) · h · ndlog(q)e,
|skid| = ` · h · ndlog(q)e, |σ| = (`+ 2h) · ndlog(q)e.

Note that for our scheme based on plain SIS, we had quasi-quadratic key sizes
and quasi-linear signature sizes, while for our scheme based on RSIS, all sizes
are quasi-linear. However, we highlight that this comes at the cost of a more
structured and hence stronger assumption.

6 Instantiation in the Quantum Random Oracle Model

We show how to prove our constructions tightly in the quantum random oracle
model (QROM) [10]. Recall that the transformation from non-adaptive to adaptive
security can be done with a chameleon hash (namely, without random oracles,
cf. Section 3.1). Therefore it is sufficient to tightly prove security of our non-
adaptively secure instantiations in Sections 4 and 5 in the QROM.

For the rest of this section, we focus only on the SIS setting. However, note
that everything can be directly translated to the ring setting. First, recall that
the reduction we use to show security programs the random oracles H1 and H2
as follows:

H1(mpk, id) :=
{

AR̂mpk,id + G, if id ∈ Lid
AR̂mpk,id, otherwise

H2(mpk, id,m) :=
{

ARmpk,id,m + G, if (id,m) ∈ Lm
ARmpk,id,m otherwise

.

Here, Lid are the identities for which the adversary wants to see a user secret key
and Lm are the pairs of identities and messages for which the adversary wants
to see a signature. Furthermore, matrix A is the master public key and matrices
R̂mpk,id,Rmpk,id,m are short Gaussian matrices. Also, note that the reduction
programs the random oracles in this way before the adversary gets access to
them. If we want to show that the proof goes through in the QROM, then we
only have to argue that this programming can still be done without the adversary
noticing. To do so, we need the following lemma which is Lemma 3 in [10].

Lemma 14. Let A be a quantum algorithm with quantum oracle access to oracle
O. Assume that A makes at most Q quantum oracle queries to O. Consider two
instantiations of oracle O:
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– O0 is a quantum random oracle.
– O1 is sampled from a distributions of functions, such that for each x in the
domain O1(x) is identically and independently distributed according to a
distribution D whose statistical distance is within ε from uniform (i.e. it is
ε-close to uniform).

Then for any input z, the statistical distance of A’s output in input z with quantum
oracle access to O0 and A’s output in input z with quantum oracle access to O1
is at most 4Q2√ε.

To use this lemma, let Sam be an algorithm that takes uniformly random coins
as input and outputs a matrix from the appropriate Gaussian distribution, i.e. a
matrix distributed as the matrices R̂mpk,id,Rmpk,id,m above.

We will now sketch a sequence of games, such that the first game is the
security game UF-naCMA in which the adversary gets quantum access to
random oracles H1 and H2 and the last game simulates the oracles as described
above. Formally, these games are presented in Fig. 10. As said, the first game G0
is the security game UF-naCMA. In game G1, we let H̃1 be a random function
and define

H1(mpk, id) :=
{

H̃1(mpk, id) + G, if id ∈ Lid
H̃1(mpk, id), otherwise

.

Note that H1 is distributed exactly as before and hence the view of the adversary
does not change. In the next game G2, we let H̄1 be another random function
and set

H1(mpk, id) :=
{

A · Sam(H̄1(mpk, id)) + G, if id ∈ Lid
A · Sam(H̄1(mpk, id)), otherwise

.

To see that the advantage of the adversary only changes by a negligible amount,
note that we can apply Lem. 14 by setting oracle O1 to be

O1(mpk, id) := A · Sam(H̄1(mpk, id)).

The statistical distance ε to uniform is guaranteed to be negligible by Lem. 2. A
similar sequence of games can be applied afterwards for the oracle H2. We end
up in game G4 where we can apply the same reduction we used in the classical
random oracle model. In summary, we showed the following statement.

Theorem 5. The scheme IBSSIS is an UF-naCMA secure identity-based signature
scheme, under the SISn,m,q,β assumption in the quantum random oracle model.
In particular, for every ppt algorithm A there is a ppt algorithm B such that

AdvUF-naCMA
A,IBSSIS

(λ) ≤ AdvSISn,m,q,β
B (λ) + negl(λ)

and T(B) ≈ T(A).
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Oracle H1(mpk′, id) // G0,G1

01 if mpk′ = mpk ∧ id ∈ Lid : return H̃1(mpk′, id) + G // G1

02 return H̃1(mpk′, id)

Oracle H1(mpk′, id) // G2-G4

03 if mpk′ = mpk ∧ id ∈ Lid : return ASam(H̄1(mpk′, id)) + G
04 return A · Sam(H̄1(mpk′, id))

Oracle H2(mpk′, id,m) // G0-G3

05 if mpk′ = mpk ∧ (id,m) ∈ Lm : return H̃2(mpk′, id,m) + G // G3

06 return H̃2(mpk′, id,m)

Oracle H2(mpk′, id,m) // G4

07 if mpk′ = mpk ∧ (id,m) ∈ Lm : return ASam(H̄2(mpk′, id,m)) + G
08 return ASam(H̄2(mpk′, id,m))

Fig. 10. The random oracles in the proof of UF-naCMA security of IBSSIS in the quantum
random oracle model. Here, H̃1H̃2 : {0, 1}∗ → Zn×ndlog qe

q and H̄1, H̄2 : {0, 1}∗ → {0, 1}λ
are perfectly random functions. The adversary gets quantum access to these oracles.
Lines or oracles with highlighted comments are only executed in the corresponding
games.

Acknowledgements We thank Kathrin Hövelmanns for insightful discussions
about the quantum random oracle model.
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