Skip to main content

On Machine Learning for Autism Prediction from Functional Connectivity

  • Conference paper
  • First Online:
Progress in Image Processing, Pattern Recognition and Communication Systems (CORES 2021, IP&C 2021, ACS 2021)

Abstract

Autism Spectrum Disorder (ASD) has claimed big attention in order to find biomarkers in brain connectivity alterations detected in resting state functional magnetic resonance imaging (rs-fMRI) data by the induction of classification models from functional connectivities. In this paper we provide a comprehensive exploration of the impact of feature extraction/selection methods, classification model, connectivity measure and atlas parcelation on the predictive performance. We find, that principal component analysis (PCA) and factor analysis (FA) methods provide a significant improvement.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://github.com/mmscnet/Impact-feature-extraction-in-Autism.

  2. 2.

    http://fcon_1000.projects.nitrc.org/indi/abide/.

References

  1. Abraham, A., et al.: Deriving reproducible biomarkers from multi-site resting-state data: an autism-based example. NeuroImage 147, 736–745 (2017). https://doi.org/10.1016/j.neuroimage.2016.10.045. http://www.sciencedirect.com/science/article/pii/S1053811916305924

  2. Arslan, S., Ktena, S.I., Makropoulos, A., Robinson, E.C., Rueckert, D., Parisot, S.: Human brain mapping: a systematic comparison of parcellation methods for the human cerebral cortex. NeuroImage 170, 5–30 (2018). https://doi.org/10.1016/j.neuroimage.2017.04.014. http://www.sciencedirect.com/science/article/pii/S1053811917303026. Segmenting the Brain

  3. Button, K.S.: Double-dipping revisited. Nat. Neurosci. 22(5), 688–690 (2019). https://doi.org/10.1038/s41593-019-0398-z

  4. Cameron, C., et al.: The neuro bureau preprocessing initiative: open sharing of preprocessed neuroimaging data and derivatives. Front. Neuroinformat. 7 (2013). https://doi.org/10.3389/conf.fninf.2013.09.00041

  5. Cox, D.R.: Principles of Statistical Inference. Cambridge University Press, New York (2006)

    Book  Google Scholar 

  6. Craddock, R.C., James, G., Holtzheimer III, P.E., Hu, X.P., Mayberg, H.S.: A whole brain fMRI atlas generated via spatially constrained spectral clustering. Hum. Brain Mapping 33(8), 1914–1928 (2012). https://doi.org/10.1002/hbm.21333. https://onlinelibrary.wiley.com/doi/abs/10.1002/hbm.21333

  7. Dadi, K., et al.: Benchmarking functional connectome-based predictive models for resting-state fMRI. Neuroimage 192, 115–134 (2019). https://doi.org/10.1016/j.neuroimage.2019.02.062

    Article  Google Scholar 

  8. d’Anjou, A., Graña, M., Moutet, F.: Brief survey about the search for biomarkers and computer aided diagnosis of autism spectrum disorder. Technical report, Zenodo (2018). https://doi.org/10.5281/zenodo.1408202

  9. Desikan, R.S., et al.: An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. NeuroImage 31(3), 968–980 (2006). https://doi.org/10.1016/j.neuroimage.2006.01.021. http://www.sciencedirect.com/science/article/pii/S1053811906000437

  10. Dosenbach, N.U.F., et al.: Prediction of individual brain maturity using fMRI. Science 329(5997), 1358–1361 (2010). https://doi.org/10.1126/science.1194144. https://science.sciencemag.org/content/329/5997/1358

  11. Eickhoff, S.B., et al.: Assignment of functional activations to probabilistic cytoarchitectonic areas revisited. NeuroImage 36(3), 511–521 (2007). https://doi.org/10.1016/j.neuroimage.2007.03.060. http://www.sciencedirect.com/science/article/pii/S1053811907002303

  12. Fawcett, T.: ROC graphs with instance-varying costs. Pattern Recogn. Lett. 27(8), 882–891 (2006). https://doi.org/10.1016/j.patrec.2005.10.012. http://www.sciencedirect.com/science/article/pii/S0167865505003053. ROC Analysis in Pattern Recognition

  13. Hinton, G.: Connectionist learning procedures. Artif. Intell. 40, 185–234 (1989)

    Article  Google Scholar 

  14. Kriegeskorte, N., Simmons, W.K., Bellgowan, P.S.F., Baker, C.I.: Circular analysis in systems neuroscience: the dangers of double dipping. Nat. Neurosci. 12(5), 535–540 (2009). https://doi.org/10.1038/nn.2303

  15. Ledoit, O., Wolf, M.: A well-conditioned estimator for large-dimensional covariance matrices. J. Multivariate Anal. 88(2), 365–411 (2004). https://doi.org/10.1016/S0047-259X(03)00096-4. http://www.sciencedirect.com/science/article/pii/S0047259X03000964

  16. Pearson, K.: Notes on regression and inheritance in the case of two parents. Proc. R. Soc. Lond. 58, 240–242 (1895)

    Article  Google Scholar 

  17. Puerto, E., Aguilar, J., López, C., Chávez, D.: Using multilayer fuzzy cognitive maps to diagnose autism spectrum disorder. Appl. Soft Comput. 75, 58–71 (2019). https://doi.org/10.1016/j.asoc.2018.10.034. http://www.sciencedirect.com/science/article/pii/S156849461830591X

  18. Rolls, E.T., Huang, C.C., Lin, C.P., Feng, J., Joliot, M.: Automated anatomical labelling atlas 3. NeuroImage 116189 (2019). https://doi.org/10.1016/j.neuroimage.2019.116189. http://www.sciencedirect.com/science/article/pii/S1053811919307803

  19. Smith, S.M., et al.: Network modelling methods for fMRI. NeuroImage 54(2), 875–891 (2011). https://doi.org/10.1016/j.neuroimage.2010.08.063. http://www.sciencedirect.com/science/article/pii/S1053811910011602

  20. Tibshirani, R.: Regression shrinkage and selection via the lasso. J. R. Stat. Soc. Ser. B (Methodol.) 58(1), 267–88 (1996)

    Google Scholar 

  21. Tipping, M.: Sparse Bayesian learning and the relevance vector machine. J. Mach. Learn. Res. 1, 211–244 (2001)

    MathSciNet  MATH  Google Scholar 

  22. Tzourio-Mazoyer, N., et al.: Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. NeuroImage 15(1), 273–289 (2002). https://doi.org/10.1006/nimg.2001.0978. http://www.sciencedirect.com/science/article/pii/S1053811901909784

  23. Varoquaux, G., Baronnet, F., Kleinschmidt, A., Fillard, P., Thirion, B.: Detection of brain functional-connectivity difference in post-stroke patients using group-level covariance modeling. In: MICCAI (2010)

    Google Scholar 

  24. Woodward, N.D., Cascio, C.J.: Resting-state functional connectivity in psychiatric disorders. JAMA Psychiatry 72(8), 743–744 (2015). https://doi.org/10.1001/jamapsychiatry.2015.0484

  25. Zalesky, A., Fornito, A., Bullmore, E.: On the use of correlation as a measure of network connectivity. NeuroImage 60(4), 2096–2106 (2012). https://doi.org/10.1016/j.neuroimage.2012.02.001. http://www.sciencedirect.com/science/article/pii/S1053811912001784

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Silva, M., Graña, M. (2022). On Machine Learning for Autism Prediction from Functional Connectivity. In: Choraś, M., Choraś, R.S., Kurzyński, M., Trajdos, P., Pejaś, J., Hyla, T. (eds) Progress in Image Processing, Pattern Recognition and Communication Systems. CORES IP&C ACS 2021 2021 2021. Lecture Notes in Networks and Systems, vol 255. Springer, Cham. https://doi.org/10.1007/978-3-030-81523-3_16

Download citation

Publish with us

Policies and ethics