Skip to main content

Optimization of Neural Network Models for Estimating the Risk of Developing Hypertension Using Bio-inspired Algorithms

  • Conference paper
  • First Online:
Fuzzy Information Processing 2020 (NAFIPS 2020)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1337))

Included in the following conference series:

Abstract

Nowadays, the use of intelligent systems can help in achieving a quick and timely diagnosis, with the aim of avoiding or controlling some diseases. In this case, the general goal of this work is to provide an intelligent model capable of solving a real life health problem, such as the risk of developing hypertension. For this reason, a new computational model is proposed using a neural network that has the ability to estimate the risk of developing high blood pressure in the next four years, which is optimized using the Flower Pollination Algorithm and Ant Lion Optimizer. The neural network model has seven inputs that are: age, gender, body mass index, systolic pressure, diastolic pressure, if the patient smokes, and if the patient has parents with hypertension, and one output, which is the risk of developing hypertension in the next 4 years. Simulation results show the advantage of the proposed approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. P. Jain, P. Kar, Non-convex optimization for machine learning. Found. Trends Mach. Learn. 10, 142–336 (2017)

    Article  Google Scholar 

  2. I. Miramontes, C.J. Guzman, P. Melin, G. Prado-Arechiga, Optimal design of interval type-2 fuzzy heart rate level classification systems using the bird swarm algorithm. Algorithms 11(12) (2018). https://doi.org/10.3390/a11120206

  3. J.C. Guzmán, I. Miramontes, P. Melin, G. Prado-Arechiga, Optimal genetic design of type-1 and interval type-2 fuzzy systems for blood pressure level classification. Axioms 8(1) (2019). https://doi.org/10.3390/axioms8010008

  4. P. Melin, G. Prado-Arechiga, I. Miramontes, J.C. Guzman, Classification of nocturnal blood pressure profile using fuzzy systems. J. Hypertens. 36, e111–e112 (2018)

    Article  Google Scholar 

  5. J.C. Guzman, P. Melin, G. Prado-Arechiga, Design of an optimized fuzzy classifier for the diagnosis of blood pressure with a new computational method for expert rule optimization. Algorithms 10(3) (2017). https://doi.org/10.3390/a10030079

  6. X.S. Yang, M. Karamanoglu, X. He, Flower pollination algorithm: a novel approach for multiobjective optimization. Eng. Optim. 46(9), 1222–1237 (2014)

    Article  MathSciNet  Google Scholar 

  7. S. Mirjalili, The ant lion optimizer. Adv. Eng. Softw. 83, 80–98 (2015)

    Article  Google Scholar 

  8. V. Papademetriou, E.A. Andreadis, C. Geladari, Management of Hypertension (Springer International Publishing AG, Cham, 2019)

    Book  Google Scholar 

  9. M. Paul et al., Measurement of Blood Pressure in Humans: a scientific statement from the American heart association. Hypertension 73(5), e35–e66 (2019)

    Google Scholar 

  10. A. Zanchetti et al., 2018 ESC/ESH guidelines for the management of arterial hypertension. Eur. Heart J. 39(33), 3021–3104 (2018)

    Article  Google Scholar 

  11. G.L. Bakris, M.J. Sorrentino, Hypertension, A Companion to Braunwald’s Heart Disease, 3rd Edn. (Elsevier, Philadelphia, 2018)

    Google Scholar 

  12. Framingham Heart Study (2019). Accessed 15 July 2019. https://www.framinghamheartstudy.org/risk-functions/hypertension/index.php

  13. G. Cain, Artificial Neural Networks: New Research (Nova Science Publishers, Incorporated, New York, 2017)

    Google Scholar 

  14. L. Jin, S. Li, J. Yu, J. He, Robot manipulator control using neural networks: a survey. Neurocomputing 285, 23–34 (2018)

    Article  Google Scholar 

  15. J. Saadat, P. Moallem, H. Koofigar, Training echo estate neural network using harmony search algorithm. Int. J. Artif. Intell. 15(1), 163–179 (2017)

    Google Scholar 

  16. G. Villarrubia, J.F. De Paz, P. Chamoso, F. De la Prieta, Artificial neural networks used in optimization problems. Neurocomputing 272, 10–16 (2018)

    Article  Google Scholar 

  17. C.C. Aggarwal, Neural Networks and Deep Learning: A Textbook, 1st edn. (Springer International Publishing, Cham, 2018)

    Book  Google Scholar 

  18. P. Melin, G. Prado-Arechiga, I. Miramontes, M. Medina-Hernandez, Hybrid intelligent model based on modular neural network and fuzzy logic for hypertension risk diagnosis. J. Hypertens. 34, e153 (2016)

    Google Scholar 

  19. I. Miramontes, G. Martínez, P. Melin, G. Prado-Arechiga, A hybrid intelligent system model for hypertension diagnosis, in Nature-Inspired Design of Hybrid Intelligent Systems. ed. by P. Melin, O. Castillo, J. Kacprzyk (Springer International Publishing, Cham, 2017), pp. 541–550

    Chapter  Google Scholar 

  20. P. Melin, I. Miramontes, G. Prado-Arechiga, A hybrid model based on modular neural networks and fuzzy systems for classification of blood pressure and hypertension risk diagnosis. Expert Syst. Appl. 107, 146–164 (2018)

    Article  Google Scholar 

  21. J.C. Guzmán, P. Melin, G. Prado-Arechiga, Neuro-fuzzy hybrid model for the diagnosis of blood pressure, in Nature-Inspired Design of Hybrid Intelligent Systems. ed. by P. Melin, O. Castillo, J. Kacprzyk (Springer International Publishing, Cham, 2017), pp. 573–582

    Chapter  Google Scholar 

  22. J. Soto, P. Melin, O. Castillo, A new approach for time series prediction using ensembles of IT2FNN models with optimization of fuzzy integrators. Int. J. Fuzzy Syst. 20(3), 701–728 (2018)

    Article  MathSciNet  Google Scholar 

  23. P. Melin, D. Sánchez, Multi-objective optimization for modular granular neural networks applied to pattern recognition. Inf. Sci. (Ny) 460–461, 594–610 (2018)

    Article  MathSciNet  Google Scholar 

  24. J. Amezcua, P. Melin, Classification of arrhythmias using modular architecture of LVQ neural network and type 2 fuzzy logic, in Nature-Inspired Design of Hybrid Intelligent Systems, 1st edn., ed. by P. Melin, O. Castillo, J. Kacprzyk (Springer International Publishing, Cham, 2017), pp. 187–194

    Chapter  Google Scholar 

  25. O.R. Carvajal, O. Castillo, J. Soria, Optimization of membership function parameters for fuzzy controllers of an autonomous mobile robot using the flower pollination algorithm. J. Autom. Mob. Robot. Intell. Syst. 12(1), 44–49 (2018)

    Google Scholar 

  26. J. Tarigan, Nadia, R. Diedan, Y. Suryana, Plate recognition using backpropagation neural network and genetic algorithm. Procedia Comput. Sci. 116, 365–372 (2017)

    Google Scholar 

  27. J. Ben Ali, T. Hamdi, N. Fnaiech, V. Di Costanzo, F. Fnaiech, J.-M. Ginoux, Continuous blood glucose level prediction of type 1 diabetes based on artificial neural network. Biocybern. Biomed. Eng. 38(4), 828–840 (2018)

    Google Scholar 

  28. M.A. Sanchez, O. Castillo, J.R. Castro, P. Melin, Fuzzy granular gravitational clustering algorithm for multivariate data. Inf. Sci. 279, 498–511 (2014)

    Article  MathSciNet  Google Scholar 

  29. D. Sanchez, P. Melin, Optimization of modular granular neural networks using hierarchical genetic algorithms for human recognition using the ear biometric measure. Eng. Appl. Artif. Intell. 27, 41–56 (2014)

    Article  Google Scholar 

  30. O. Castillo, Type-2 fuzzy logic in intelligent control applications (Springer, 2012).

    Google Scholar 

  31. E. Ontiveros-Robles, P. Melin, O. Castillo, Comparative analysis of noise robustness of type 2 fuzzy logic controllers. Kybernetika 54(1), 175–201 (2018)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patricia Melin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Melin, P., Miramontes, I., Carvajal, O., Prado-Arechiga, G. (2022). Optimization of Neural Network Models for Estimating the Risk of Developing Hypertension Using Bio-inspired Algorithms. In: Bede, B., Ceberio, M., De Cock, M., Kreinovich, V. (eds) Fuzzy Information Processing 2020. NAFIPS 2020. Advances in Intelligent Systems and Computing, vol 1337. Springer, Cham. https://doi.org/10.1007/978-3-030-81561-5_19

Download citation

Publish with us

Policies and ethics