Skip to main content

Merging Maple and GeoGebra Automated Reasoning Tools

  • Conference paper
  • First Online:
Maple in Mathematics Education and Research (MC 2020)

Abstract

A branch of the Automated Deduction in Geometry (ADG) theory deals with the automatic proof and discovery of theses holding on a given collection of hypotheses. The mechanical proof and derivation of such statements, through computational complex algebraic geometry methods, will be exemplify in this paper through the performance of GeoGebra Automated Reasoning Tools. Then we will refer to some challenging issues that rise in this context, regarding the translation in algebraic terms of the given geometric facts, the verification or the finding of the sought properties, and the interpretation of the outcome. We will show how some of these involved issues could be be better approached through the collaboration of Maple packages for polynomial ideal manipulation, requiring, as well, diverse theoretical concepts recently introduced by the authors.

The authors are partially supported by FEDER/Ministerio de Ciencia, Innovación y Universidades – Agencia Estatal de Investigación/MTM2017-88796-P (Symbolic Computation: new challenges in Algebra and Geometry and their applications).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    See https://wiki.geogebra.org/en/Relation_Command for a full list.

  2. 2.

    https://github.com/kovzol/geogebra-discovery, http://autgeo.online/geogebra-dis-covery/.

  3. 3.

    http://autgeo.online/ag/, https://github.com/kovzol/ag.

References

  1. Abar, C., Kovács, Z., Recio, T., Vajda, R.: Connecting Mathematica and GeoGebra to explore inequalities on planar geometric constructions, Brazilian Wolfram Technology Conference, Saõ Paulo, November 2019

    Google Scholar 

  2. Alvin, C., Gulwani, S., Majumdar, R., Mukhopadhyay, S.: Synthesis of geometry proof problems. In: Proceedings of the Twenty-Eighth Association for the Advancement of Artificial Intelligence Conference on Artificial Intelligence, pp. 245–252 (2014). https://www.microsoft.com/en-us/research/publication/synthesis-geometry-proof-problems/

  3. Botana, F., et al.: Automated theorem proving in GeoGebra: current achievements. J. Autom. Reasoning 55(1), 39–59 (2015). https://doi.org/10.1007/s10817-015-9326-4

    Article  MathSciNet  MATH  Google Scholar 

  4. Botana, F., Kovács, Z., Recio, T.: Towards an automated geometer. In: Fleuriot, J., Wang, D., Calmet, J. (eds.) AISC 2018. LNCS (LNAI), vol. 11110, pp. 215–220. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-99957-9_15

    Chapter  Google Scholar 

  5. Botana, F., Kovács, Z., Recio, T.: A mechanical geometer. Math. Comput. Sci. (2020)

    Google Scholar 

  6. Recio, T., Botana, F.: Where the truth lies (in automatic theorem proving in elementary geometry). In: Laganá, A., Gavrilova, M.L., Kumar, V., Mun, Y., Tan, C.J.K., Gervasi, O. (eds.) ICCSA 2004. LNCS, vol. 3044, pp. 761–770. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24709-8_80

    Chapter  Google Scholar 

  7. Boutry, P., Braun, G., Narboux, J.: Formalization of the arithmetization of Euclidean plane geometry and applications. J. Symbolic Comput. 90, 149–168 (2019)

    Article  MathSciNet  Google Scholar 

  8. Chou, S.C.: Mechanical geometry theorem proving. D. Reidel Publishing Company, Dordrecht, Netherlands (1988)

    Google Scholar 

  9. Chou, S.C., Gao, X.S., Zhang, J.Z.: Machine proofs in geometry. Automated production of readable proofs for geometry theorems. In: Series on Applied Mathematics, vol. 6, World Scientific, Singapore (1994)

    Google Scholar 

  10. GeoGebra Homepage. http://www.geogebra.org. Accessed Dec 2020

  11. Giac/Xcas Homepage. https://www-fourier.ujf-grenoble.fr/~parisse/giac.html. Accessed Dec 2020

  12. Howson, G., Wilson, B. (eds.): ICMI Study Series: School Mathematics in the 1990’s. Cambridge University Press, Cambridge, UK (1987)

    Google Scholar 

  13. Kapur, D.: Using Gröbner bases to reason about geometry problems. J. Symbolic Computat. 2(4), 399–408 (1986)

    Article  Google Scholar 

  14. Kapur, D.: A refutational approach to geometry theorem proving. Artif. Intell. 37(1–3), 61–93 (1988)

    Article  MathSciNet  Google Scholar 

  15. Kovács, Z.: Computer based conjectures and proofs in teaching Euclidean geometry. Ph.D. Dissertation. Linz, Johannes Kepler University (2015)

    Google Scholar 

  16. Kovács, Z.: The relation tool in GeoGebra 5. In: Botana, F., Quaresma, P. (eds.) ADG 2014. LNCS (LNAI), vol. 9201, pp. 53–71. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21362-0_4

    Chapter  Google Scholar 

  17. Kovács, Z., Parisse, B.: Giac and GeoGebra - improved Gröbner basis computations. In: Gutierrez, J., Schicho, J., Weimann, M. (eds.) Computer Algebra and Polynomials, LNCS, vol. 8942, pp. 126–138, Springer (2015). https://doi.org/10.1007/978-3-319-15081-9_7

  18. Kovács, Z., Recio, T., Sólyom-Gecse, C.: Rewriting input expressions in complex algebraic geometry provers. Ann. Math. Artif. Intell. (1), 73–87 (2018). https://doi.org/10.1007/s10472-018-9590-1

  19. Kovács, Z., Recio, T., Vélez, M.P.: Using automated reasoning tools in GeoGebra in the teaching and learning of proving in geometry. Int. J. Technol. Math. Educ. 25(2), 33–50 (2018)

    Google Scholar 

  20. Kovács, Z., Recio, T., Vélez, M.P.: Detecting truth, just on parts. Revista Matemática Complutense 32(2), 451–474 (2018). https://doi.org/10.1007/s13163-018-0286-1

    Article  MathSciNet  MATH  Google Scholar 

  21. Kovács, Z., Recio, T.: GeoGebra reasoning tools for humans and for automatons. In: Electronic Proceedings of the 25th Asian Technology Conference in Mathematics (ATCM 2020), 14–16 December 2020. Published by Mathematics and Technology, LLC (2020). http://atcm.mathandtech.org/EP2020/invited/21786.pdf (2020)

  22. Recio, T., Vélez, M.P.: Automatic discovery of theorems in elementary geometry. J. Autom. Reasoning 23, 63–82 (1999)

    Article  MathSciNet  Google Scholar 

  23. Wen-Tsün, W.: Basic principles of mechanical theorem proving in elementary geometries. J. Autom. Reasoning 2(3), 221–252 (1986)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomás Recio .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kovács, Z., Recio, T., Vélez, M.P. (2021). Merging Maple and GeoGebra Automated Reasoning Tools. In: Corless, R.M., Gerhard, J., Kotsireas, I.S. (eds) Maple in Mathematics Education and Research. MC 2020. Communications in Computer and Information Science, vol 1414. Springer, Cham. https://doi.org/10.1007/978-3-030-81698-8_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-81698-8_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-81697-1

  • Online ISBN: 978-3-030-81698-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics