Skip to main content

Advances in Production Management Systems: Issues, Trends, and Vision Towards 2030

  • Chapter
  • First Online:
Advancing Research in Information and Communication Technology

Abstract

Since its inception in 1978, the IFIP Working Group (WG) 5.7 on Advances in Production Management Systems (APMS) has played an active role in the fields of production and production management. The Working Group has focused on the conception, development, strategies, frameworks, architectures, processes, methods, and tools needed for the advancement of both fields. The associated standards created by the IFIP WG5.7 have always been impacted by the latest developments of scientific rigour, academic research, and industrial practices. The most recent of those developments involves the Fourth Industrial Revolution, which is having remarkable (r)evolutionary and disruptive changes in both the fields and the standards. These changes are triggered by the fusion of advanced operational and informational technologies, innovative operating and business models, as well as social and environmental pressures for more sustainable production systems. This chapter reviews past, current, and future issues and trends to establish a coherent vision and research agenda for the IFIP WG5.7 and its international community. The chapter covers a wide range of production aspects and resources required to design, engineer, and manage the next generation of sustainable and smart production systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://www.ifipwg57.org/.

  2. 2.

    https://www.apms-conference.org/.

  3. 3.

    https://www.industrialontologies.org/.

  4. 4.

    https://www.nist.gov/cyberframework/.

  5. 5.

    https://www.ellenmacarthurfoundation.org/.

  6. 6.

    Smart Data is defined as high-quality, accurate, up-to-date, and contextualized data targeted to assist specific business needs such as supporting a more confident AI and human decision-making.

  7. 7.

    https://www.internationaldataspaces.org/.

References

  1. World Economic Forum: (2020). https://www.weforum.org/platforms/shaping-the-future-of-production

  2. Taisch, M., et al.: World manufacturing forum report – recommendations for the future of manufacturing. World Manufacturing Forum (2018)

    Google Scholar 

  3. Sinha, A., Bernardes, E., Calderon, R., Wuest, T.: Digital Supply Networks. McGraw-Hill, New York (2020)

    Google Scholar 

  4. Rudberg, M., Wikner, J.: Mass customization in terms of the customer order decoupling point. Prod. Plan. Control 15(4), 445–458 (2004)

    Article  Google Scholar 

  5. Duchi, A., Tamburini, F., Parisi, D., Maghazei, O., Schönsleben, P.: From ETO to mass customization: a two-horizon ETO enabling process. In: Bellemare, J., Carrier, S., Nielsen, K., Piller, F.T. (eds.) Managing Complexity. SPBE, pp. 99–113. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29058-4_8

    Chapter  Google Scholar 

  6. Vellmar, J., Gepp, M., Schertl, A.: The future of engineering – scenarios of the future way of working in the engineer-to-order business. In: Proceedings of the Annual IEEE International Systems Conference, pp. 1–5 (2017)

    Google Scholar 

  7. Bonev, M.: Enabling mass customization in engineer-to-order industries: a multiple case study analysis on concepts, methods and tools. Ph.D. thesis, DTU (2015)

    Google Scholar 

  8. Wikner, J., Rudberg, M.: Integrating production and engineering perspectives on the customer order decoupling point. Int. J. Oper. Prod. Manag. 25(7), 623–641 (2005)

    Article  Google Scholar 

  9. Cannas, V.G.: Engineering and production alignment in engineer-to-order supply chains. Ph.D. thesis, Politecnico di Milano (2019)

    Google Scholar 

  10. Rossit, D.A., Tohmé, F., Frutos, M.: Industry 4.0: smart scheduling. Int. J. Prod. Res. 57(12), 3802–3813 (2019)

    Article  Google Scholar 

  11. Wuest, T., Schmidt, T., Wei, W., Romero, D.: Towards (pro-)active intelligent products. Int. J. Prod. Lifecycle Manag. 11(2), 154–189 (2018)

    Article  Google Scholar 

  12. Li, H., Palau, A.S., Parlikad, A.K.: A social network of collaborating industrial assets. Proc. Inst. Mech. Eng. Part O: J. Risk Reliab. 232(4), 389–400 (2018)

    Google Scholar 

  13. Kiritsis, D.: Closed-loop PLM for intelligent products in the era of the Internet of Things. Comput. Aided Des. 43(5), 479–501 (2011)

    Article  Google Scholar 

  14. de Oliveira, S.F., Soares, A.L.: A PLM vision for circular economy. In: Camarinha-Matos, L.M., Afsarmanesh, H., Fornasiero, R. (eds.) PRO-VE 2017. IFIP, AICT, vol. 506, pp. 591–602. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-65151-4_52

    Chapter  Google Scholar 

  15. Macchi, M., Roda, I., Toffoli, L.: Remaining useful life estimation for informed end of life management of industrial assets: a conceptual model. In: Moon, I., Lee, G.M., Park, J., Kiritsis, D., von Cieminski, G. (eds.) APMS 2018. IFIP, AICT, vol. 536, pp. 335–342. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-99707-0_42

    Chapter  Google Scholar 

  16. Scholz-Reiter, B., Görges, M., Philipp, T.: Autonomously controlled production systems – influence of autonomous control level on logistic performance. CIRP Ann. 58(1), 395–398 (2009)

    Article  Google Scholar 

  17. Guillén, A.J., Crespo, A., Macchi, M., Gómez, J.: On the role of prognostics and health management in advanced maintenance systems. Prod. Plan. Control Manag. Oper. 27(12), 991–1004 (2016)

    Article  Google Scholar 

  18. Cho, S., et al.: A hybrid machine learning approach for predictive maintenance in smart factories of the future. In: Moon, I., Lee, G.M., Park, J., Kiritsis, D., von Cieminski, G. (eds.) APMS 2018. IFIP, AICT, vol. 536, pp. 311–317. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-99707-0_39

    Chapter  Google Scholar 

  19. Psarommatis, F., Kiritsis, D.: Identification of the inspection specifications for achieving zero defect manufacturing. In: Ameri, F., Stecke, K.E., von Cieminski, G., Kiritsis, D. (eds.) APMS 2019. IFIP, AICT, vol. 566, pp. 267–273. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-30000-5_34

    Chapter  Google Scholar 

  20. Psarommatis, F., May, G., Dreyfus, P.-A., Kiritsis, D.: Zero defect manufacturing: state-of-the-art review, shortcomings and future directions in research. Int. J. Prod. Res. 58(1), 1–17 (2020)

    Article  Google Scholar 

  21. Roda, I., Macchi, M.: A framework to embed asset management in production companies. Proc. Inst. Mech. Eng. Part O: J. Risk Reliab. 232(4), 368–378 (2018)

    Google Scholar 

  22. Roda, I., Macchi, M.: Factory-level performance evaluation of buffered multi-state production systems. J. Manuf. Syst. 50, 226–235 (2019)

    Article  Google Scholar 

  23. Roda, I., Arena, S., Macchi, M., Orrù, P.F.: Total cost of ownership driven methodology for predictive maintenance implementation in industrial plants. In: Ameri, F., Stecke, K.E., von Cieminski, G., Kiritsis, D. (eds.) APMS 2019. IFIP, AICT, vol. 566, pp. 315–322. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-30000-5_40

    Chapter  Google Scholar 

  24. Polenghi, A., Roda, I., Macchi, M., Trucco, P.: Risk sources affecting the asset management decision-making process in manufacturing: a systematic review of the literature. In: Ameri, F., Stecke, K.E., von Cieminski, G., Kiritsis, D. (eds.) APMS 2019. IFIP, AICT, vol. 566, pp. 274–282. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-30000-5_35

    Chapter  Google Scholar 

  25. Nezami, Z., Zamanifar, K., Arena, D., Kiritsis, D.: Ontology-based resource allocation for Internet of Things. In: Ameri, F., Stecke, K.E., von Cieminski, G., Kiritsis, D. (eds.) APMS 2019. IFIP, AICT, vol. 566, pp. 323–330. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-30000-5_41

    Chapter  Google Scholar 

  26. Polenghi, A., Roda, I., Macchi, M., Pozzetti, A.: Conceptual framework for a data model to support asset management decision-making process. In: Ameri, F., Stecke, K.E., von Cieminski, G., Kiritsis, D. (eds.) APMS 2019. IFIP, AICT, vol. 566, pp. 283–290. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-30000-5_36

    Chapter  Google Scholar 

  27. Lee, J., Ni, J., Djurdjanovic, D., Qiu, H., Liao, H.: Intelligent prognostics tools and E-maintenance. Comput. Ind. 57(6), 476–489 (2006)

    Article  Google Scholar 

  28. Sun, B., Zeng, S., Kang, R., Pecht, M.G.: Benefits and challenges of system prognostics. IEEE Trans. Reliab. 61(2), 323–335 (2012)

    Article  Google Scholar 

  29. Fumagalli, L., Cattaneo, L., Roda, I., Macchi, M., Rondi, M.: Data-driven CBM tool for risk-informed decision-making in an electric arc furnace. Int. J. Adv. Manufact. Technol. 105(1–4), 595–608 (2019)

    Article  Google Scholar 

  30. Romero, D., Wuest, T., Harik, R., Thoben, K.-D.: Towards a cyber-physical PLM environment: the role of digital product models, intelligent products, digital twins, product avatars and digital shadow. In: Proceedings of the 21st IFAC World Congress (2020)

    Google Scholar 

  31. Negri, E., Fumagalli, L., Macchi, M.: A review of the roles of digital twin in CPS-based production systems. Proc. Manufact. 11, 939–948 (2017)

    Article  Google Scholar 

  32. Ashtari Talkhestani, B., et al.: An architecture of an intelligent digital twin in a cyber-physical production system. Automatisierungstechnik 67(9), 762–782 (2019)

    Article  Google Scholar 

  33. Gölzer, P., Fritzsche, A.: Data-driven operations management: organisational implications of the digital transformation in industrial practice. Prod. Plan. Control 28(16), 1332–1343 (2017)

    Article  Google Scholar 

  34. Mittal, S., Khan, M.A., Romero, D., Wuest, T.: Smart manufacturing: characteristics, technologies and enabling factors. J. Eng. Manuf. 233(5), 342–1361 (2017)

    Google Scholar 

  35. Romero, D., Gaiardelli, P., Powell, D., Wuest, T., Thürer, M.: Digital lean cyber-physical production systems: the emergence of digital lean manufacturing and the significance of digital waste. In: Moon, I., Lee, G.M., Park, J., Kiritsis, D., von Cieminski, G. (eds.) APMS 2018. IFIP, AICT, vol. 535, pp. 11–20. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-99704-9_2

    Chapter  Google Scholar 

  36. Christensen, B., Andersen, A.-L., Medini, K., Brunoe, T.D.: Reconfigurable manufacturing: a case-study of reconfigurability potentials in the manufacturing of capital goods. In: Ameri, F., Stecke, K.E., von Cieminski, G., Kiritsis, D. (eds.) APMS 2019. IFIP, AICT, vol. 566, pp. 366–374. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-30000-5_46

    Chapter  Google Scholar 

  37. Medini, K., Andersen, A.L., Wuest, T., Christensen, B., et al.: Highlights in customer-driven operations management research. Proc. CIRP 86, 12–19 (2019)

    Article  Google Scholar 

  38. Wiesner, S., Gaiardelli, P., Gritti, N., Oberti, G.: Maturity models for digitalization in manufacturing – applicability for SMEs. In: Moon, I., Lee, G.M., Park, J., Kiritsis, D., von Cieminski, G. (eds.) APMS 2018. IFIP, AICT, vol. 536, pp. 81–88. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-99707-0_11

    Chapter  Google Scholar 

  39. Kulvatunyou, B., Ivezic, N., Morris, K., Frechette, S.: Drilling-down on smart manufacturing-enabling composable apps. Manufact. Lett. 10, 14–17 (2016)

    Article  Google Scholar 

  40. Freitag, M., Wiesner, S.: Smart service lifecycle management: a framework and use case. In: Moon, I., Lee, G.M., Park, J., Kiritsis, D., von Cieminski, G. (eds.) APMS 2018. IFIP, AICT, vol. 536, pp. 97–104. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-99707-0_13

    Chapter  Google Scholar 

  41. Alvela Nieto, M.T., Nabati, E.G., Bode, D., Redecker, M.A., Decker, A., Thoben, K.-D.: Enabling energy efficiency in manufacturing environments through deep learning approaches: lessons learned. In: Ameri, F., Stecke, K.E., von Cieminski, G., Kiritsis, D. (eds.) APMS 2019. IFIP, AICT, vol. 567, pp. 567–574. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-29996-5_65

    Chapter  Google Scholar 

  42. Hwang, D., Noh, S.D.: 3D visualization system of manufacturing big data and simulation results of production for an automotive parts supplier. In: Ameri, F., Stecke, K.E., von Cieminski, G., Kiritsis, D. (eds.) APMS 2019. IFIP, AICT, vol. 567, pp. 381–386. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-29996-5_44

    Chapter  Google Scholar 

  43. Thoben, K.D., Wiesner, S., Wuest, T.: “Industrie 4.0” and smart manufacturing – a review of research issues and application examples. Int. J. Autom. Technol. 11(1), 4–16 (2017)

    Article  Google Scholar 

  44. Kulvatunyou, B., Oh, H., Ivezic, N., Nieman, S.T.: Standards-based semantic integration of manufacturing information: past, present, and future. J. Manuf. Syst. 52, 184–197 (2019)

    Article  Google Scholar 

  45. Sahal, R., Breslin, J.G., Ali, M.I.: Big data and stream processing platforms for Industry 4.0 requirements mapping for a predictive maintenance use case. J. Manuf. Syst. 54, 138–151 (2020)

    Article  Google Scholar 

  46. Otto, B., Hompel, M., Wrobel, S.: International data spaces. In: Neugebauer, Reimund (ed.) Digital Transformation, pp. 109–128. Springer, Heidelberg (2019). https://doi.org/10.1007/978-3-662-58134-6_8

    Chapter  Google Scholar 

  47. Schuh, G., Prote, J.-P., Fränken, B., Dany, S., Gützlaff, A.: Reduction of decision complexity as an enabler for continuous production network design. In: Moon, I., Lee, G.M., Park, J., Kiritsis, D., von Cieminski, G. (eds.) APMS 2018. IFIP, AICT, vol. 535, pp. 246–253. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-99704-9_30

    Chapter  Google Scholar 

  48. Tien, K.-W., Kulvatunyou, B., Jung, K., Prabhu, V.: An investigation to manufacturing analytical services composition using the analytical target cascading method. In: Nääs, I., et al. (eds.) APMS 2016. IFIP, AICT, vol. 488, pp. 469–477. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-51133-7_56

    Chapter  Google Scholar 

  49. Kulvatunyou, B., Wallace, E., Kiritsis, D., Smith, B., Will, C.: The industrial ontologies foundry proof-of-concept project. In: Moon, I., Lee, G.M., Park, J., Kiritsis, D., von Cieminski, G. (eds.) APMS 2018. IFIP, AICT, vol. 536, pp. 402–409. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-99707-0_50

    Chapter  Google Scholar 

  50. Brundage, M.P., Kulvatunyou, B., Ademujimi, T., Rakshith, B.: Smart manufacturing through a framework for a knowledge-based diagnosis system. In: Proceedings of the ASME 12th International Manufacturing Science and Engineering Conference (2017)

    Google Scholar 

  51. Romero, D., Flores, M., Herrera, M., Resendez, H.: Five management pillars for digital transformation integrating the lean thinking philosophy. In: Proceedings of the 25th International ICE-Conference on Engineering, Technology and Innovation, pp. 1–8 (2019)

    Google Scholar 

  52. Powell, D., Romero, D., Gaiardelli, P., Cimini, C., Cavalieri, S.: Towards digital lean cyber-physical production systems: Industry 4.0 technologies as enablers of leaner production. In: Moon, I., Lee, G.M., Park, J., Kiritsis, D., von Cieminski, G. (eds.) APMS 2018. IFIP, AICT, vol. 536, pp. 353–362. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-99707-0_44

    Chapter  Google Scholar 

  53. Womack, J.P., Jones, D.T.: Lean Thinking: Banish Waste and Create Wealth in your Corporation. Simon & Schuster, New York (1996)

    Google Scholar 

  54. Romero, D., Gaiardelli, P., Thürer, M., Powell, D., Wuest, T.: Cyber-physical waste identification and elimination strategies in the digital lean manufacturing world. In: Ameri, F., Stecke, K.E., von Cieminski, G., Kiritsis, D. (eds.) APMS 2019. IFIP, AICT, vol. 566, pp. 37–45. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-30000-5_5

    Chapter  Google Scholar 

  55. Netland, T.H., Powell, D.J. (eds.): The Routledge Companion to Lean Management, 1st edn. Routledge, London (2016)

    Google Scholar 

  56. Romero, D., Gaiardelli, P., Powell, D., Wuest, T., Thürer, M.: Total quality management and quality circles in the digital lean manufacturing world. In: Ameri, F., Stecke, K.E., von Cieminski, G., Kiritsis, D. (eds.) APMS 2019. IFIP, AICT, vol. 566, pp. 3–11. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-30000-5_1

    Chapter  Google Scholar 

  57. Romero, D., Gaiardelli, P., Powell, D., Wuest, T., Thürer, M.: Rethinking Jidoka systems under automation and learning perspectives in the digital lean manufacturing world. IFAC Pap. Online 52(13), 899–903 (2019)

    Article  Google Scholar 

  58. Romero, D., Bernus, P., Noran, O., Stahre, J., Fast-Berglund, Å.: The Operator 4.0: human cyber-physical systems and adaptive automation towards human-automation symbiosis work systems. In: Nääs, I., et al. (eds.) APMS 2016. IFIP, AICT, vol. 488, pp. 677–686. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-51133-7_80

    Chapter  Google Scholar 

  59. Romero, D., et al.: Towards an Operator 4.0 typology: a human-centric perspective on the fourth industrial revolution technologies. In: Proceedings of the International Conference on Computers and Industrial Engineering (2016)

    Google Scholar 

  60. Romero, D., Wuest, T., Stahre, J., Gorecky, D.: Social factory architecture: social networking services and production scenarios through the social Internet of Things, services and people for the social Operator 4.0. In: Lödding, H., Riedel, R., Thoben, K.-D., von Cieminski, G., Kiritsis, D. (eds.) APMS 2017. IFIP, AICT, vol. 513, pp. 265–273. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66923-6_31

    Chapter  Google Scholar 

  61. Romero, D., Stahre, J., Taisch, M.: The Operator 4.0: towards socially sustainable factories of the future. Comput. Ind. Eng. 139, 106128 (2020)

    Article  Google Scholar 

  62. Kaasinen, E., et al.: Empowering and engaging industrial workers with Operator 4.0 solutions. Comput. Ind. Eng. 139, 105678 (2020)

    Article  Google Scholar 

  63. Romero, D., Noran, O., Stahre, J., Bernus, P., Fast-Berglund, Å.: Towards a human-centred reference architecture for next generation balanced automation systems: human-automation symbiosis. In: Umeda, S., Nakano, M., Mizuyama, H., Hibino, H., Kiritsis, D., von Cieminski, G. (eds.) APMS 2015. IFIP, AICT, vol. 460, pp. 556–566. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-22759-7_64

    Chapter  Google Scholar 

  64. Rauch, E., Linder, C., Dallasega, P.: Anthropocentric perspective of production before and within Industry 4.0. Comput. Ind. Eng. 139, 105644 (2020)

    Article  Google Scholar 

  65. Ruppert, T., Jaskó, S., Holczinger, T., Abonyi, J.: Enabling technologies for Operator 4.0: a survey. Appl. Sci. 8(9), 1650 (2018)

    Article  Google Scholar 

  66. Munir, S., Stankovic, J.A., et al.: Cyber-physical system challenges for human-in-the-loop control. In: Proceedings of the 8th International Workshop on Feedback Computing, vol. 4, pp. 1–4 (2013)

    Google Scholar 

  67. Jones, A.T., Romero, D., Wuest, T.: Modeling agents as joint cognitive systems in smart manufacturing systems. Manuf. Lett. 17, 6–8 (2018)

    Article  Google Scholar 

  68. Herrington, J., et al.: Immersive learning technologies: realism and online authentic learning. J. Comput. High. Educ. 19(1), 80–99 (2007)

    Article  MathSciNet  Google Scholar 

  69. Baalsrud Hauge, J.M., Pourabdollahian, B., Riedel, J.C.K.H.: The use of serious games in the education of engineers. In: Emmanouilidis, C., Taisch, M., Kiritsis, D. (eds.) APMS 2012. IFIP, AICT, vol. 397, pp. 622–629. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40352-1_78

    Chapter  Google Scholar 

  70. Pourabdollahian Tehran, B., Oliveira, M.F., Taisch, M., Baalsrud Hauge, J., Riedel, J.C.K.H.: Status and trends of serious game application in engineering and manufacturing education. In: Meijer, S.A., Smeds, R. (eds.) ISAGA 2013. LNCS, vol. 8264, pp. 77–84. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-04954-0_10

    Chapter  Google Scholar 

  71. Dempsey, M., Riedel, R., Kelly, M.: Serious play as a method for process design. In: Grabot, B., Vallespir, B., Gomes, S., Bouras, A., Kiritsis, D. (eds.) APMS 2014. IFIP, AICT, vol. 438, pp. 395–402. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44739-0_48

    Chapter  Google Scholar 

  72. Garbaya, S., et al.: Sensorial virtualization: coupling gaming and virtual environment. J. Adv. Distrib. Learn. Technol. 2(5), 16–30 (2014)

    Google Scholar 

  73. Stefan, I.A., et al.: Using serious games and simulations for teaching co-operative decision-making. Proc. Comput. Sci. 162, 745–753 (2019)

    Article  Google Scholar 

  74. Hallinger, P., et al.: A bibliometric review of research on simulations and serious games used in educating for sustainability, 1997–2019. Clean. Prod. 256, 120358 (2020)

    Article  Google Scholar 

  75. Ordaz, N., Romero, D., Gorecky, D., Siller, H.R.: Serious games and virtual simulator for automotive manufacturing education and training. Proc. Comput. Sci. 75, 267–274 (2015)

    Article  Google Scholar 

  76. Cerinšek, G., et al.: Recommendations to leverage game-based learning to attract young talent to manufacturing education. In: Alcañiz, M., Göbel, S., Ma, M., Fradinho Oliveira, M., Baalsrud Hauge, J., Marsh, T. (eds.) JCSG 2017. LNCS, vol. 10622, pp. 187–202. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70111-0_18

    Chapter  Google Scholar 

  77. Vergnano, A., Berselli, G., Pellicciari, M.: Interactive simulation-based-training tools for manufacturing systems operators: an industrial case study. Int. J. Interact. Des. Manuf. 11, 785–797 (2017)

    Article  Google Scholar 

  78. Hořejší, P., Vyšata, J., Rohlíková, L., Polcar, J., Gregor, M.: Serious games in mechanical engineering education. In: Visvizi, A., Lytras, M.D. (eds.) RIIFORUM 2019. SPC, pp. 55–63. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-30809-4_6

    Chapter  Google Scholar 

  79. Taisch, M., et al.: World manufacturing forum report – skills for the future of manufacturing. In: World Manufacturing Forum (2019)

    Google Scholar 

  80. Erol, S., Jäger, A., Hold, P., et al.: Tangible Industry 4.0: a scenario-based approach to learning for the future of production. Proc. CIRP 54, 13–18 (2016)

    Article  Google Scholar 

  81. Hantono, B.S., et al.: Meta-review of augmented reality in education. In: Proceedings of the International Conference on Information Technology and Electrical Engineering, pp. 312–315 (2018)

    Google Scholar 

  82. Wolf, T.: Intensifying user loyalty through service gamification: motivational experiences and their impact on hedonic and utilitarian value. In: Proceedings of the 40th International Conference in Information Systems (2019)

    Google Scholar 

  83. Smith, N., Wuest, T.: Identifying key aspects of success for product service systems. In: Lödding, H., Riedel, R., Thoben, K.-D., von Cieminski, G., Kiritsis, D. (eds.) APMS 2017. IFIP, AICT, vol. 513, pp. 231–238. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66923-6_27

    Chapter  Google Scholar 

  84. Cavalieri, S., Ouertani, Z.M., Zhibin, J., Rondini, A.: Service transformation in industrial companies. Prod. Res. 56(8), 2099–2101 (2018)

    Article  Google Scholar 

  85. Marjanovic, U., Lalic, B., Majstorovic, V., Medic, N., Prester, J., Palcic, I.: How to increase share of product-related services in revenue? Strategy towards servitization. In: Moon, I., Lee, G.M., Park, J., Kiritsis, D., von Cieminski, G. (eds.) APMS 2018. IFIP, AICT, vol. 536, pp. 57–64. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-99707-0_8

    Chapter  Google Scholar 

  86. Cavalieri, S., Pezzotta, G., Yoshiki, S.: Product-service system engineering: from theory to industrial applications. Comput. Ind. 63(4), 275–277 (2012)

    Article  Google Scholar 

  87. Gaiardelli, P., Martinez, V., Cavalieri, S.: The strategic transition to services: a dominant logic perspective and its implications for operations. Prod. Plan. Control 26(14–15), 1165–1170 (2015)

    Article  Google Scholar 

  88. Baines, T., Bigdeli, A.Z., Bustinza, O.F., Shi, V.G., Baldwin, J., Ridgway, K.: Servitization: revisiting the state-of-the-art and research priorities. Int. Oper. Prod. Manag. 37(2), 256–278 (2017)

    Article  Google Scholar 

  89. Goedkoop, M.J., et al.: Product Service Systems: Ecological and Economic Basics (1999)

    Google Scholar 

  90. Romero, D., Gaiardelli, P., Pezzotta, G., Cavalieri, S.: The impact of digital technologies on services characteristics: towards digital servitization. In: Ameri, F., Stecke, K.E., von Cieminski, G., Kiritsis, D. (eds.) APMS 2019. IFIP, AICT, vol. 566, pp. 493–501. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-30000-5_61

    Chapter  Google Scholar 

  91. Marjanovic, U., Rakic, S., Lalic, B.: Digital servitization: the next “Big Thing” in manufacturing industries. In: Ameri, F., Stecke, K.E., von Cieminski, G., Kiritsis, D. (eds.) APMS 2019. IFIP, AICT, vol. 566, pp. 510–517. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-30000-5_63

    Chapter  Google Scholar 

  92. Boucher, X., Medini, K., Coba, C.M.: Framework to model PSS collaborative value networks and assess uncertainty of their economic models. In: Camarinha-Matos, L.M., Afsarmanesh, H., Antonelli, D. (eds.) PRO-VE 2019. IFIP, AICT, vol. 568, pp. 541–551. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-28464-0_47

    Chapter  Google Scholar 

  93. Wiesner, S., Hauge, J.B., Sonntag, P., Thoben, K.-D.: Applicability of agile methods for dynamic requirements in smart PSS development. In: Ameri, F., Stecke, K.E., von Cieminski, G., Kiritsis, D. (eds.) APMS 2019. IFIP, AICT, vol. 566, pp. 666–673. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-30000-5_81

    Chapter  Google Scholar 

  94. Moser, B., Kampker, A., Jussen, P., Frank, J.: Organization of sales for smart product service systems. In: Ameri, F., Stecke, K.E., von Cieminski, G., Kiritsis, D. (eds.) APMS 2019. IFIP, AICT, vol. 566, pp. 518–526. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-30000-5_64

    Chapter  Google Scholar 

  95. Sala, R., Pezzotta, G., Pirola, F., Huang, G.Q.: Decision-support system-based service delivery in the product-service system context: literature review and gap analysis. Proc. CIRP 83, 126–131 (2019)

    Article  Google Scholar 

  96. Sala, R., Zanetti, V., Pezzotta, G., Cavalieri, S.: The role of technology in designing and delivering product-service systems. In: Proceedings of the IEEE Conference, Funchal, Portugal (2017)

    Google Scholar 

  97. Baines, T., Shi, V.G.: Delphi study to explore the adoption of servitization in UK companies. Prod. Plan. Control 26(14–15), 1171–1187 (2015)

    Article  Google Scholar 

  98. Kowalkowski, C., Gebauer, H., et al.: Servitization and deservitization: overview, concepts, and definitions. Ind. Mark. Manag. 60, 4–10 (2017)

    Article  Google Scholar 

  99. Wiesner, S., Westphal, I., Hirsch, M., Thoben, K.-D.: Manufacturing service ecosystems. In: Emmanouilidis, C., Taisch, M., Kiritsis, D. (eds.) APMS 2012. IFIP, AICT, vol. 398, pp. 305–312. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40361-3_39

    Chapter  Google Scholar 

  100. Pirola, F., Pezzotta, G., Andreini, D., Galmozzi, C., Savoia, A., Pinto, R.: Understanding customer needs to engineer product-service systems. In: Grabot, B., Vallespir, B., Gomes, S., Bouras, A., Kiritsis, D. (eds.) APMS 2014. IFIP, AICT, vol. 439, pp. 683–690. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44736-9_83

    Chapter  Google Scholar 

  101. Rondini, A., Tornese, F., Gnoni, M., Pezzotta, G., Pinto, R.: Business process simulation for the design of sustainable product service systems (PSS). In: Umeda, S., Nakano, M., Mizuyama, H., Hibino, H., Kiritsis, D., von Cieminski, G. (eds.) APMS 2015. IFIP, AICT, vol. 460, pp. 646–653. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-22759-7_74

    Chapter  Google Scholar 

  102. Alexopoulos, K., Koukas, S., Boli, N., Mourtzis, D.: Resource planning for the installation of industrial product service systems. In: Lödding, H., Riedel, R., Thoben, K.-D., von Cieminski, G., Kiritsis, D. (eds.) APMS 2017. IFIP, AICT, vol. 514, pp. 205–213. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66926-7_24

    Chapter  Google Scholar 

  103. Orellano, M., Medini, K., Lambey-Checchin, C., Norese, M.-F., Neubert, G.: A multi-criteria approach to collaborative product-service systems design. In: Ameri, F., Stecke, K.E., von Cieminski, G., Kiritsis, D. (eds.) APMS 2019. IFIP, AICT, vol. 567, pp. 481–489. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-29996-5_56

    Chapter  Google Scholar 

  104. Rust, R.T.: If everything is service, why is this happening now, and what difference does it make? Invited commentaries on evolving to a new dominant logic for marketing. J. Mark. 68(1), 18–27 (2004)

    Google Scholar 

  105. Romero, D., Stahre, J.: Social sustainability of future manufacturing – challenges and strategies: an essay. In the world manufacturing forum report – skills for the future of manufacturing. In: World Manufacturing Forum (2019)

    Google Scholar 

  106. Khan, M., Mittal, S., West, S., Wuest, T.: Review on upgradability – a product lifetime extension strategy in the context of product-service systems. Clean. Prod. 204, 1154–1168 (2018)

    Article  Google Scholar 

Download references

Acknowledgements and Disclaimer

The co-authors would like to acknowledge the contributions of the IFIP WG5.7 members to the definition of these “Seven Grand Challenges” for Production and Production Management towards 2030. Any mention of commercial products is for information only; it does not imply recommendation or endorsement by the IFIP WG5.7 or NIST.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Romero .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 IFIP International Federation for Information Processing

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Romero, D. et al. (2021). Advances in Production Management Systems: Issues, Trends, and Vision Towards 2030. In: Goedicke, M., Neuhold, E., Rannenberg, K. (eds) Advancing Research in Information and Communication Technology. IFIP Advances in Information and Communication Technology(), vol 600. Springer, Cham. https://doi.org/10.1007/978-3-030-81701-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-81701-5_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-81700-8

  • Online ISBN: 978-3-030-81701-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics