Skip to main content

Synthesis of Barker-Like Codes with Adaptation to Interference

  • Conference paper
  • First Online:
Lecture Notes in Computational Intelligence and Decision Making (ISDMCI 2021)

Abstract

Interference immunity is one of the important characteristics of data reception/transmission systems. Increasing immunity to interference at fixed transmit/receive rates is a current issue, e.g. for drone control. The investigated Barker-like code (BLC) sequences allow increasing the power of the received sequences due to the use of mirror interference-resistant code sequences. The increase in data transmission interference is achieved by increasing the length and power of the interference-resistant codec sequence used to transmit a single message. Interference immunity is one of the important characteristics of data reception/transmission systems. Increasing immunity to interference at fixed transmit/receive rates is a current issue, e.g. for drone control. The advantages of these sequences (e.g. high immunity to high power narrow-band interference, code-based subscriber separation, transmission stealth, high resistance to multipath, high resolution in navigation measurements) will have wide practical application in communication and geolocation systems. The paper improves the method of synthesis of interference-resistant BLC sequences using ideal ring beams. An improved method for quickly finding such interference-resistant code sequences that are capable of finding and correcting errors according to the length of the resulting code sequence is considered. Implemented an algorithm for quickly finding such interference-resistant Barker-like coding sequences that are capable of finding and correcting errors according to the length of the resulting code sequence in a large volume. A simulation model of interference-resistant BL coding using ideal ring bundles is developed. The software implementation of the simulation model of the noise-resistant Barker-like coding (on finding and correcting errors in the obtained noise-resistant BLC sequences) has been carried out. The proposed noise-correcting BLC sequences have practical value, since with the help of the obtained code sequence is quite simple and fast to find (up to 50%) and correct (up to 25%) distorted characters (of the length of the noise-correcting code sequence).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ahmad, J., Akula, A., Mulaveesala, R., Sardana, H.K.: Barker-coded thermal wave imaging for non-destructive testing and evaluation of steel material. IEEE Sensors J. 19(2), 735–742 (2019). https://doi.org/10.1109/JSEN.2018.2877726

  2. Aljalai, A.M.N., Feng, C., Leung, V.C.M., Ward, R.: Improving the energy efficiency of DFT-S-OFDM in uplink massive MIMO with barker codes. In: 2020 International Conference on Computing, Networking and Communications (ICNC), pp. 731–735 (2020). https://doi.org/10.1109/ICNC47757.2020.9049829

  3. Babichev, S., Sharko, O., Sharko, A., Mikhalyov, O.: Soft filtering of acoustic emission signals based on the complex use of huang transform and wavelet analysis. In: Lytvynenko, V., Babichev, S., Wójcik, W., Vynokurova, O., Vyshemyrskaya, S., Radetskaya, S. (eds.) Lecture Notes in Computational Intelligence and Decision Making, pp. 3–19. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-26474-1_1

  4. Bender, W., Gruhl, D., Morimoto, N., Lu, A.: Techniques for data hiding. IBM Syst. J. 35(3.4), 313–336 (1996). https://doi.org/10.1147/sj.353.0313

  5. Fu, J., Ning, G.: Barker coded excitation using pseudo chirp carrier with pulse compression filter for ultrasound imaging. In: BIBE 2018; International Conference on Biological Information and Biomedical Engineering, pp. 1–5 (2018)

    Google Scholar 

  6. Jiao, S., Feng, J., Gao, Y., Lei, T., Yuan, X.: Visual cryptography in single-pixel imaging. Opt. Express 28(5), 7301–7313 (2020)

    Google Scholar 

  7. Kellman, M., Rivest, F., Pechacek, A., Sohn, L., Lustig, M.: Barker-coded node-pore resistive pulse sensing with built-in coincidence correction. In: 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 1053–1057 (2017). https://doi.org/10.1109/ICASSP.2017.7952317

  8. König, S., Schmidt, M., Hoene, C.: Precise time of flight measurements in ieee 802.11 networks by cross-correlating the sampled signal with a continuous barker code. In: The 7th IEEE International Conference on Mobile Ad-hoc and Sensor Systems (IEEE MASS 2010), pp. 642–649 (2010). https://doi.org/10.1109/MASS.2010.5663785

  9. Lakshmi, R., Trivikramarao, D., Subhani, S., Ghali, V.S.: Barker coded thermal wave imaging for anomaly detection. In: 2018 Conference on Signal Processing And Communication Engineering Systems (SPACES), pp. 198–201 (2018). https://doi.org/10.1109/SPACES.2018.8316345

  10. Matsuyuki, S., Tsuneda, A.: A study on aperiodic auto-correlation properties of concatenated codes by barker sequences and NFSR sequences. In: 2018 International Conference on Information and Communication Technology Convergence (ICTC), pp. 664–666 (2018). https://doi.org/10.1109/ICTC.2018.8539367

  11. Omar, S., Kassem, F., Mitri, R., Hijazi, H., Saleh, M.: A novel barker code algorithm for resolving range ambiguity in high PRF radars. In: 2015 European Radar Conference (EuRAD), pp. 81–84 (2015). https://doi.org/10.1109/EuRAD.2015.7346242

  12. Palagin, A., Opanasenko, V.: Reconfigurable-computing technology. Cybern. Syst. Anal. 43, 675–686 (2007). https://doi.org/10.1007/s10559-007-0093-z

  13. Palagin, A., Opanasenko, V., Krivoi, S.: The structure of FPGA-based cyclic-code converters. Optical Memory Neural Netw. 22(4), 207–216 (2013). https://doi.org/10.3103/S1060992X13040024

  14. Kim, P., Jung, E., Bae, S., Kim, K., Song, T.K.: Barker-sequence-modulated golay coded excitation technique for ultrasound imaging. In: 2016 IEEE International Ultrasonics Symposium (IUS), pp. 1–4 (2016). https://doi.org/10.1109/ULTSYM.2016.7728737

  15. Riznyk, O., Povshuk, O., Kynash, Y., Nazarkevich, M., Yurchak, I.: Synthesis of non-equidistant location of sensors in sensor network. In: 2018 XIV-th International Conference on Perspective Technologies and Methods in MEMS Design (MEMSTECH), pp. 204–208 (2018). https://doi.org/10.1109/MEMSTECH.2018.8365734

  16. Riznyk, O., Povshuk, O., Kynash, Y., Yurchak, I.: Composing method of anti-interference codes based on non-equidistant structures. In: 2017 XIIIth International Conference on Perspective Technologies and Methods in MEMS Design (MEMSTECH), pp. 15–17 (2017). https://doi.org/10.1109/MEMSTECH.2017.7937522

  17. Riznyk, O., Povshuk, O., Noga, Y., Kynash, Y.: Transformation of information based on noisy codes. In: 2018 IEEE Second International Conference on Data Stream Mining Processing (DSMP), pp. 162–165 (2018). https://doi.org/10.1109/DSMP.2018.8478509

  18. Riznyk, O., Myaus, O., Kynash, Y., Martsyshyn, R., Miyushkovych, Y.: Noise-resistant non-equidistant data conversion. In: Babichev, S., Peleshko, D., Vynokurova, O. (eds.) Data Stream Mining & Processing, pp. 127–139. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-61656-4_8

  19. Rodriguez-Garcia, P., Ledford, G., Baylis, C., Marks, R.J.: Real-time synthesis approach for simultaneous radar and spatially secure communications from a common phased array. In: 2019 IEEE Radio and Wireless Symposium (RWS), pp. 1–4 (2019). https://doi.org/10.1109/RWS.2019.8714503

  20. Rosli, S.J., Rahim, H., Ngadiran, R., Rani, K.A., Ahmad, M.I., Hoon, W.F.: Design of binary coded pulse trains with good autocorrelation properties for radar communications. In: MATEC Web of Conferences 150 (2018). https://doi.org/10.1051/matecconf/201815006016

  21. Sikora, L., Lysa, N., Martsyshyn, R., Miyushkovych, Y.: Models of combining measuring and information systems for evaluation condition parameters of energy-active systems. In: 2016 IEEE First International Conference on Data Stream Mining Processing (DSMP), pp. 290–294 (2016). https://doi.org/10.1109/DSMP.2016.7583561

  22. Sikora, L., Martsyshyn, R., Miyushkovych, Y., Lysa, N.: Methods of information and system technologies for diagnosis of vibrating processes. In: 2017 12th International Scientific and Technical Conference on Computer Sciences and Information Technologies (CSIT), vol. 1, pp. 192–195 (2017). https://doi.org/10.1109/STC-CSIT.2017.8098766

  23. Tsmots, I., Rabyk, V., Riznyk, O., Kynash, Y.: Method of synthesis and practical realization of quasi-barker codes. In: 2019 IEEE 14th International Conference on Computer Sciences and Information Technologies (CSIT), vol. 2, pp. 76–79 (2019). https://doi.org/10.1109/STC-CSIT.2019.8929882

  24. Tsmots, I., Riznyk, O., Rabyk, V., Kynash, Y., Kustra, N., Logoida, M.: Implementation of FPGA-based barker’s-like codes. In: Lytvynenko, V., Babichev, S., Wójcik, W., Vynokurova, O., Vyshemyrskaya, S., Radetskaya, S. (eds.) Lecture Notes in Computational Intelligence and Decision Making, pp. 203–214. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-26474-1_15

  25. Vienneau, E., Byram, B.: Compound barker-coded excitation for increased signal-to-noise ratio and penetration depth in transcranial ultrasound imaging. In: 2020 IEEE International Ultrasonics Symposium (IUS), pp. 1–4 (2020). https://doi.org/10.1109/IUS46767.2020.9251650

  26. Wang, M., Cong, S., Zhang, S.: Pseudo chirp-barker-golay coded excitation in ultrasound imaging. In: 2018 Chinese Control And Decision Conference (CCDC), pp. 4035–4039 (2018). https://doi.org/10.1109/CCDC.2018.8407824

  27. Wang, S., He, P.: Research on low intercepting radar waveform based on LFM and barker code composite modulation. In: 2018 International Conference on Sensor Networks and Signal Processing (SNSP), pp. 297–301 (2018). https://doi.org/10.1109/SNSP.2018.00064

  28. Sheng, X.I.A., Li, Z.P., Jiang, C.L., Wang, S.J., Wang, K.C.: Application of pulse compression technology in electromagnetic ultrasonic thickness measurement. In: 2018 IEEE Far East NDT New Technology Application Forum (FENDT), pp. 37–41 (2018). https://doi.org/10.1109/FENDT.2018.8681975

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuliya Miyushkovych .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Riznyk, O., Tsmots, I., Martsyshyn, R., Miyushkovych, Y., Kynash, Y. (2022). Synthesis of Barker-Like Codes with Adaptation to Interference. In: Babichev, S., Lytvynenko, V. (eds) Lecture Notes in Computational Intelligence and Decision Making. ISDMCI 2021. Lecture Notes on Data Engineering and Communications Technologies, vol 77. Springer, Cham. https://doi.org/10.1007/978-3-030-82014-5_14

Download citation

Publish with us

Policies and ethics