Skip to main content

Analysis of Digital Processing of the Acoustic Emission Diagnostics Informative Parameters Under Deformation Impact Conditions

  • Conference paper
  • First Online:
Lecture Notes in Computational Intelligence and Decision Making (ISDMCI 2021)

Abstract

The problem of diagnostics and identification of the metal structures state during their operation is solved by studying the effects and mechanisms of generation and propagation of acoustic emission signals when changing the parameters of the force field caused by different types of loading. The most informative parameters of acoustic emission signals under the conditions of deformational bending and uniaxial loading have been established. The results of digital processing of signals obtained experimentally are presented. The results obtained are a necessary stage in the mathematical and software processing of information on the restructuring of the internal structure of a material under conditions of plastic deformation and destruction in a dynamic system of assessing the states of the mechanical properties of structures during their operation. The close connection between the processes occurring in the material under loading and the presence of acoustic emission effects makes it possible to predict changes in the mechanical properties and structure of materials based on acoustic measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aleksenko, V., Sharko, A., Sharko, O., Stepanchikov, D., Yurenin, K.: Identification by ae method of structural features of deformation mechanisms at bending. Tech. Diagn. Nondestr. Test. (1), 32–39 (2019). https://doi.org/10.15407/tdnk2019.01.01

  2. Aleksenko, V., Sharko, A., Smetankin, S., Stepanchikov, D., Yurenin, K.: Detection of acoustic-emission effects during reloading of St3sp steel specimens. Tech. Diagn. Nondestr. Test. (4), 25–31 (2017). https://doi.org/10.15407/tdnk2017.04.04

  3. Babichev, S., Durnyak, B., Zhydetskyy, V., Pikh, I., Senkivskyy, V.: Application of optics density-based clustering algorithm using inductive methods of complex system analysis. In: IEEE 2019 14th International Scientific and Technical Conference on Computer Sciences and Information Technologies, CSIT 2019 - Proceedings, pp. 169–172 (2019). https://doi.org/10.1109/STC-CSIT.2019.8929869

  4. Babichev, S., Škvor, J.: Technique of gene expression profiles extraction based on the complex use of clustering and classification methods. Diagnostics 10(8) (2020). Article no. 584. https://doi.org/10.3390/diagnostics10080584

  5. Babichev, S., Sharko, O., Sharko, A., Milhalyov, O.: Soft filtering of acoustic emission signals based on the complex use of Huang transform and wavelet analysis. Adv. Intell. Syst. Comput. 1020, 3–19 (2020). https://doi.org/10.1007/978-3-030-26474-1_1

    Article  Google Scholar 

  6. Bobrov, A., Danilina, A.: Probabilistic method for choosing significant signal filtering parameters in acoustic emission diagnostics of technical objects. Russ. J. Nondestr. Test. 12, 36–43 (2014)

    Google Scholar 

  7. Bohmann, T., Schlamp, M., Ehrlich, I.: Acoustic emission of material damages in glass fibre-reinforced plastics. Compos. B Eng. 155, 444–451 (2018). https://doi.org/10.1016/j.compositesb.2018.09.018

    Article  Google Scholar 

  8. Cho, H., Shoji, N., Ito, H.: Acoustic emission generation behavior in A7075-T651 and A6061-T6 aluminum alloys with and without cathodic hydrogen charging under cyclic loading. J. Nondestr. Eval. 37(4), 1–7 (2018). https://doi.org/10.1007/s10921-018-0536-7

    Article  Google Scholar 

  9. Ding, Z., Fu, K., Deng, W., Li, J., Zhongrong, L.: A modified artificial bee colony algorithm for structural damage identification under varying temperature based on a novel objective function. Appl. Math. Model. 88, 121–141 (2020). https://doi.org/10.1155/2014/432654

    Article  Google Scholar 

  10. Dmitriev, A., Polyakov, V., Kolubaev, E.: Digital processing of acoustic emission signals in the study of welded compounds in metal alloys. High-Perform. Comput. Syst. Technol. 4(1), 32–40 (2020)

    Google Scholar 

  11. Dmitriev, A., Polyakov, V., Lependin, A.: Investigation of plastic deformation of aluminum alloys using wavelet transforms of acoustic emission signals. Russ. J. Nondestr. Test. 8(1), 33–36 (2018). https://doi.org/10.22226/2410-3535-2018-1-33-36

  12. Fomichev, P., Zarutskiy, A., Lyovin, A.: Researches of the stressed-deformed state of the power structures of the plane. Syst. Decis. Control Energy 1, 37–49 (2020). https://doi.org/10.1007/978-3-030-48583-2_3

    Article  Google Scholar 

  13. Gagar, D., Foote, P., Irving, P.: Effects of loading and sample geometry on acoustic emission generation during fatigue crack growth: implications for structural health monitoring. Int. J. Fatigue 81, 117–127 (2015). https://doi.org/10.1016/j.ijfatigue.2015.07.024

    Article  Google Scholar 

  14. Gong, K., Hu, J.: Online detection and evaluation of tank bottom corrosion based on acoustic emission. In: Qu, Z., Lin, J. (eds.) Proceedings of the International Field Exploration and Development Conference 2017. Springer Series in Geomechanics and Geoengineering, vol. 216039, pp. 1284–1291. Springer, Singapore (2019). https://doi.org/10.1007/978-981-10-7560-5_118

    Chapter  Google Scholar 

  15. Kanakambaran, S., Sarathi, R., Srinivasan, B.: Robust classification of partial discharges in transformer insulation based on acoustic emissions detected using fiber Bragg gratings. IEEE Sens. J. 18(24), 10018–10027 (2018). https://doi.org/10.1109/JSEN.2018.2872826

    Article  Google Scholar 

  16. Lependin, A.A., Polyakov, V.V.: Scaling of the acoustic emission characteristics during plastic deformation and fracture. Tech. Phys. 59(7), 1041–1045 (2014). https://doi.org/10.1134/S1063784214070184

    Article  Google Scholar 

  17. Li, B., et al.: Prediction equation for maximum stress of concrete drainage pipelines subjected to various damages and complex service conditions. Constr. Build. Mater. 264(20), 120238 (2020). https://doi.org/10.1016/j.conbuildmat.2020.120238

  18. Louda, P., Sharko, A., Stepanchikov, D.: An acoustic emission method for assessing the degree of degradation of mechanical properties and residual life of metal structures under complex dynamic deformation stresses. Materials 14(9), 2090 (2021). https://doi.org/10.3390/ma14092090

    Article  Google Scholar 

  19. Maiorov, A.: Digital technologies in the non-destructive inspection. Oil Gas 1, 26–37 (2010)

    Google Scholar 

  20. Maji, G., Mandal, S., Sen, S.: A systematic survey on influential spreaders identification in complex networks with a focus on k-shell based techniques. Expert Syst. Appl. 161, 113681 (2020). https://doi.org/10.1016/j.eswa.2020.113681

  21. Marasanov, V., Sharko, A.: Energy spectrum of acoustic emission signals in complex media. J. Nano- Electron. Phys. 9(4), 04024-1–04024-5 (2017). https://doi.org/10.21272/jnep.9(4).04024

  22. Marasanov, V., Sharko, A.: The energy spectrum of the acoustic emission signals of nanoscale objects. J. Nano-Electron. Phys. 9(2), 02012-1–02012-4 (2017). https://doi.org/10.21272/jnep.9(2).02012

  23. Marasanov, V., Sharko, A.: Determination of the power constants of the acoustic emission signals in the equations of the model of the complex structure motion of a continuous medium. J. Nano-Electron. Phys. 10(1), 01019(1)–01019(6) (2018). https://doi.org/10.21272/jnep.10(1).01019

  24. Marasanov, V., Sharko, A., Stepanchikov, D.: Model of the operator dynamic process of acoustic emission occurrence while of materials deforming. In: Lytvynenko, V., Babichev, S., Wójcik, W., Vynokurova, O., Vyshemyrskaya, S., Radetskaya, S. (eds.) ISDMCI 2019. AISC, vol. 1020, pp. 48–64. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-26474-1_4

    Chapter  Google Scholar 

  25. Marasanov, V., Sharko, O., Sharko, A.: Boundary problems of determining the energy spectrum of signals of acoustic emission in conjugated continuous media. Cybern. Syst. Anal. 55(5), 170–179 (2019)

    Article  Google Scholar 

  26. Marasanov, V., Stepanchikov, D., Sharko, O., Sharko, A.: Technique of system operator determination based on acoustic emission method. Adv. Intell. Syst. Comput. 1246, 3–22 (2021). https://doi.org/10.1007/978-3-030-54215-3_1

    Article  Google Scholar 

  27. Muravev, V. and Tapkov, K.: Evaluation of strain-stress state of the rails in the production. Devices Methods Meas. 8(3), 263–270 (2017). https://doi.org/10.21122/2220-9506-2017-8-3-263-270

  28. Nedoseka, A., Nedoseka, S., Markashova, L., Kushnareva, O.: On identification of structural changes in materials at fracture by acoustic emission data. Tech. Diagn. Nondestr. Test. (4), 9–13 (2016). https://doi.org/10.15407/tdnk2016.04.02

  29. Nosov, P., Ben, A., Zinchenko, S., Popovych, I., Mateichuk, V., Nosova, H.: Formal approaches to identify cadet fatigue factors by means of marine navigation simulators. In: 16th International Conference on ICT in Research, Education and Industrial Applications, vol. 2732, pp. 823–838 (2020)

    Google Scholar 

  30. Nosov, P., Zinchenko, S., Popovich, I., Safonov, M., Palamarchuk, I., Blah, V.: Decision support during the vessel control at the time of negative manifestation of human factor. In: Computer Modeling and Intelligent Systems: Proceedings of the Third International Workshop on Computer Modeling and Intelligent Systems, vol. 2608, pp. 12–26 (2020)

    Google Scholar 

  31. Nosov, V.V., Zelenskii, N.A.: Estimating the strength of welded hull elements of a submersible based on the micromechanical model of temporal dependences of acoustic-emission parameters. Russ. J. Nondestr. Test. 53(2), 89–95 (2017). https://doi.org/10.1134/S1061830917020036

    Article  Google Scholar 

  32. Ovcharuk, V., Purasev, Y.: Registration and Processing of Acoustic Emission Information in Multichannel Systems. Pacific State University, Khabarovsk (2017)

    Google Scholar 

  33. Pasternak, M., Jasek, K., Grabka, M.: Surface acoustic waves application for gas leakage detection. Diagnostyka 21(1), 35–39 (2020). https://doi.org/10.29354/diag/116078

  34. Peng, X., Zhao, Y., Small, M.: Identification and prediction of bifurcation tipping points using complex networks based on quasi-isometric mapping. Physica A: Stat. Mech. Appl. (560), 125108 (2014). https://doi.org/10.1016/j.physa.2020.125108

  35. Rajabi, A., Omidi Moaf, F., Abdelgader, H.: Evaluation of mechanical properties of two-stage concrete and conventional concrete using nondestructive tests. J. Mater. Civ. Eng. 32(7), 04020185 (2020). https://doi.org/10.1061/(ASCE)MT.1943-5533.0003247

    Article  Google Scholar 

  36. Rescalvo, F., Suarez, E., Valverde-Palacios, I., Santiago-Zaragoza, J., Gallego, A.: Health monitoring of timber beams retrofitted with carbon fiber composites via the acoustic emission technique. Compos. Struct. 206(15), 392–402 (2018). https://doi.org/10.1016/j.compstruct.2018.08.068

    Article  Google Scholar 

  37. Riabova, S.: Application of wavelet analysis to the analysis of geomagnetic field variations. J. Phys. Conf. Ser. 1141(1), 012146 (2018). https://doi.org/10.1088/1742-6596/1141/1/012146

  38. Sharko, M., Shpak, N., Gonchar, O., Vorobyova, K., Lepokhina, O., Burenko, J.: Methodological basis of causal forecasting of the economic systems development management processes under the uncertainty. Adv. Intell. Syst. Comput. 1246, 423–436 (2021). https://doi.org/10.1007/978-3-030-54215-3_27

    Article  Google Scholar 

  39. Sharko, M., Zaitseva, O., Gusarina, N.: Providing of innovative activity and economic development of enterprise in the conditions of external environment dynamic changes. Sci. Bull. Polissia 3(11(2)), 57–60 (2017)

    Google Scholar 

  40. Su, F., Li, T., Pan, X., Miao, M.: Acoustic emission responses of three typical metals during plastic and creep deformations. Exp. Tech. 42(6), 685–691 (2018). https://doi.org/10.1007/s40799-018-0274-x

    Article  Google Scholar 

  41. Susanto, A., Liu, C., Yamada, K., Hwang, Y., Tanaka, R., Sekiya, K.: Milling process monitoring based on vibration analysis using Hilbert-Huang transform. Int. J. Autom. Technol. 12(5), 688–698 (2018). https://doi.org/10.20965/ijat.2018.p0688

  42. Sychev, S., Fadin, Y., Breki, A., Gvozdev, A., Ageev, E., Provotorov, D.: Time-frequency analysis of acoustic emission signals recorded during friction using wavelet transform. Russ. J. Nondestr. Test. 7(4(25)), 49–59 (2017)

    Google Scholar 

  43. Trusiak, M., Styk, A., Patorski, K.: Hilbert-Huang transform based advanced Bessel fringe generation and demodulation for full-field vibration studies of specular reflection micro-objects. Opt. Lasers Eng. 110, 100–112 (2018). https://doi.org/10.1016/j.optlaseng.2018.05.021

    Article  Google Scholar 

  44. Wang, K., Zhang, X., Hao, Q., Wang, Y., Shen, Y.: Application of improved leastsquare generative adversarial networks for rail crack detection by AE technique. Neurocomputing 332, 236–248 (2019). https://doi.org/10.1016/j.neucom.2018.12.057

    Article  Google Scholar 

  45. Yakovlev, A., Sosnin, V.: Digital processing of acoustic pulses in the acoustic emission diagnostics system Kaeme. Electron. J. Tech. Acoust. 4, 1–14 (2018)

    Google Scholar 

  46. Yuan, H., Liu, X., Liu, Y., Bian, H., Chen, W., Wang, Y.: Analysis of acoustic wave frequency spectrum characters of rock under blasting damage based on the HHT method. Adv. Civil Eng. 2018(9207476), 8 (2018). https://doi.org/10.1155/2018/9207476

    Article  Google Scholar 

  47. Zhang, X., et al.: A new rail crack detection method using LSTM network for actual application based on AE technology. Appl. Acoust. 142, 78–86 (2018). https://doi.org/10.1016/j.apacoust.2018.08.020

    Article  Google Scholar 

  48. Zinchenko, S., Tovstokoryi, O., Nosov, P., Popovych, I., Kobets, V., Abramov, G.: Mathematical support of the vessel information and risk control systems. In: Proceedings of the 1st International Workshop on Computational and Information Technologies for Risk-Informed Systems, vol. 2805, pp. 335–354 (2020)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dmitry Stepanchikov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Marasanov, V., Rudakova, H., Stepanchikov, D., Sharko, O., Sharko, A., Kiryushatova, T. (2022). Analysis of Digital Processing of the Acoustic Emission Diagnostics Informative Parameters Under Deformation Impact Conditions. In: Babichev, S., Lytvynenko, V. (eds) Lecture Notes in Computational Intelligence and Decision Making. ISDMCI 2021. Lecture Notes on Data Engineering and Communications Technologies, vol 77. Springer, Cham. https://doi.org/10.1007/978-3-030-82014-5_16

Download citation

Publish with us

Policies and ethics