Skip to main content

Reduction of Training Samples in Solar Insolation Prediction Under Weather and Climatic Changes

  • Conference paper
  • First Online:
Lecture Notes in Computational Intelligence and Decision Making (ISDMCI 2021)

Abstract

The paper considers the problem of forecasting solar insolation. Due to a large number of factors that are difficult to predict, this problem is complex and difficult like other problems where parameters depend on weather or climate. Despite such factors do not significantly affect the parameters under study, they create an essential bias. The problem is also characterized by a significant amount of information, which should be processed to obtain a reliable forecast. The paper discusses relevant machine learning methods and analyzes methods for reducing the training sample to make quality and reliable predictions of solar insolation under the weather and climatic changes. Reducing the size of the training sample allowed testing a significant number of models and optimizing the hyperparameters of these models, which made it possible to identify the most accurate model, which graph is close to ideal. The effect of reducing the size of the training sample has been measured related to the speed and accuracy of machine learning algorithms. It is shown that the use of clustered data sampling for models that prone to overfitting can improve the accuracy of these models. It is shown that using the method of clustering to reduce data samples can also reduce variance in the training dataset. The reduced data sample helps to perform optimization of hyperparameters because the accuracy of different models is preserved over a wide range of input data. The results obtained can be successfully applied in control systems for large objects of solar energy generation under conditions of fast and frequent weather changes as well as slow climatic changes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Archives: NSRDB (n.d.). https://nsrdb.nrel.gov/data-sets/archives.html

  2. Abirami, S., Chitra, P.: Energy-efficient edge based real-time healthcare support system. Adv. Comput. 117(1), 339–368 (2020). https://doi.org/10.1016/bs.adcom.2019.09.007

    Article  Google Scholar 

  3. Aggarwal, S.K., Saini, L.M.: Solar energy prediction using linear and non-linear regularization models: a study on AMS (American Meteorological Society) 2013–14 Solar Energy Prediction Contest. Energy 78, 247–256 (2014). https://doi.org/10.1016/j.energy.2014.10.012

    Article  Google Scholar 

  4. Ahmad, A., Anderson, T.N., Lie, T.T.: Hourly global solar irradiation forecasting for New Zealand. Solar Energy 122, 1398–1408 (2015). https://doi.org/10.1016/j.solener.2015.10.055

    Article  Google Scholar 

  5. Chung, M.H.: Estimating solar insolation and power generation of photovoltaic systems using previous day weather data. Adv. Civil Eng. 2020, 1–13 (2020). https://doi.org/10.1155/2020/8701368

    Article  Google Scholar 

  6. de Araujo, J.M.S.: Performance comparison of solar radiation forecasting between WRF and LSTM in Gifu. Japan. Environ. Res. Commun. 2(4), 045002 (2020). https://doi.org/10.1088/2515-7620/ab7366

    Article  Google Scholar 

  7. Diez, F.J., Navas-Gracia, L.M., Chico-Santamarta, L., Correa-Guimaraes, A., Martínez-Rodríguez, A.: Prediction of horizontal daily global solar irradiation using artificial neural networks (ANNs) in the castile and León region, Spain. Agronomy 10, 96 (2020). https://doi.org/10.3390/agronomy10010096

    Article  Google Scholar 

  8. Fürnkranz, J.: Decision tree. In: Sammut C., Webb G.I. (eds) Encyclopedia of Machine Learning. Springer, Boston (2011). https://doi.org/10.1007/978-0-387-30164-8_204

  9. Ghojogh, B., Crowley, M.: Principal sample analysis for data reduction. In: IEEE International Conference on Big Knowledge (ICBK). pp. 350–357 (2018). https://doi.org/10.1109/icbk.2018.00054

  10. Gorban, A.N., Tyukin, I.Y.: Blessing of dimensionality: mathematical foundations of the statistical physics of data. Philos. Trans. R. Soc. Ser. A Math. Phys. Eng. Sci. 376(2118), 20170237 (2018). https://doi.org/10.1098/rsta.2017.0237

    Article  MathSciNet  Google Scholar 

  11. Harrell, F.E., Jr.: Regression Modeling Strategies. SSS, Springer, Cham (2015). https://doi.org/10.1007/978-3-319-19425-7

    Book  MATH  Google Scholar 

  12. Ingrassia, S., Morlini, I.: Neural network modeling for small datasets. Technometrics 47(3), 297–311 (2005). https://doi.org/10.1198/004017005000000058

    Article  MathSciNet  Google Scholar 

  13. Jeon, B.K., Kim, E.J.: Next-day prediction of hourly solar irradiance using local weather forecasts and LSTM trained with non-local data. Energies 13, 5258 (2020). https://doi.org/10.3390/en13205258

    Article  Google Scholar 

  14. Jeon, B.K., Kim, E.J., Shin, Y., Lee, K.H.: Learning-based predictive building energy model using weather forecasts for optimal control of domestic energy systems. Sustainability 11, 147 (2019). https://doi.org/10.3390/su11010147

    Article  Google Scholar 

  15. Khanmirza, E., Esmaeilzadeh, A., Markazi, A.H.D.: Predictive control of a building hybrid heating system for energy cost reduction. Appl. Soft Comput. 46, 407–423 (2016). https://doi.org/10.1016/j.asoc.2016.05.005

    Article  Google Scholar 

  16. Pal, R.: Overview of predictive modeling based on genomic characterizations. In: Predictive Modeling of Drug Sensitivity, pp. 121–148 (2017). https://doi.org/10.1016/B978-0-12-805274-7.00006-3

  17. Pestov, V.: Is the k-NN classifier in high dimensions affected by the curse of dimensionality? Comput. Math. App. 65(10), 1427–1737 (2013). https://doi.org/10.1016/j.camwa.2012.09.011

    Article  MathSciNet  MATH  Google Scholar 

  18. Premalatha, N., Valan Arasu, A.: Prediction of solar radiation for solar systems by using ANN models with different back propagation algorithms. J. Appl. Res. Technol. 14(3), 206–214 (2016). https://doi.org/10.1016/j.jart.2016.05.001

    Article  Google Scholar 

  19. Qing, X., Niu, Y.: Hourly day-ahead solar irradiance prediction using weather forecasts by LSTM. Energy 148, 461–468 (2018). https://doi.org/10.1016/j.energy.2018.01.177

    Article  Google Scholar 

  20. Samimi, J.: Estimation of height-dependent solar irradiation and application to the solar climate of Iran. Solar Energy 52, 401–409 (1994). https://doi.org/10.1016/0038-092X(94)90117-K

    Article  Google Scholar 

  21. Sculley, D.: Web-scale k-means clustering. In: Proceedings of the 19th International Conference on World Wide Web, pp. 1177–1178 (2010). https://doi.org/10.1145/1772690.1772862

  22. Sharma, V., Yang, D., Walsh, W., Reindl, T.: Short term solar irradiance forecasting using a mixed wavelet neural network. Renew. Energy 90, 481–492 (2016). https://doi.org/10.1016/j.renene.2016.01.020

    Article  Google Scholar 

  23. Srivastava, S., Lessmann, S.: A comparative study of LSTM neural networks in forecasting day-ahead global horizontal irradiance with satellite data. Solar Energy 162, 232–247 (2018). https://doi.org/10.1016/j.solener.2018.01.005

    Article  Google Scholar 

  24. Varoquaux, G., Buitinck, L., Louppe, G., Grisel, O., Pedregosa, F., Mueller, A.: Scikit-learn. GetMobile. Mobile Comput. Commun. 19(1), 29–33 (2015). https://doi.org/10.1145/2786984.2786995

    Article  Google Scholar 

  25. Vindel, J.M., Polo, J., Zarzalejo, L.F.: Modeling monthly mean variation of the solar global irradiation. J. Atmos. Solar-Terr. Phys. 122, 108–118 (2015). https://doi.org/10.1016/j.jastp.2014.11.008

    Article  Google Scholar 

  26. Wang, F., Mi, Z., Su, S., Zhao, H.: Short-term solar irradiance forecasting model based on artificial neural network using statistical feature parameters. Energies 5, 1355–1370 (2012). https://doi.org/10.3390/en5051355

    Article  Google Scholar 

  27. Wilcox, S., Marion, W.: User’s manual for TMY3 data sets (revised) (2008). https://doi.org/10.2172/928611

  28. Zollanvari, Amin, Alex Pappachen, J., Sameni, R.: A theoretical analysis of the peaking phenomenon in classification. J. Classif. 37(2), 421–434 (2019). https://doi.org/10.1007/s00357-019-09327-3

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Povod, Y., Sherstjuk, V., Zharikova, M. (2022). Reduction of Training Samples in Solar Insolation Prediction Under Weather and Climatic Changes. In: Babichev, S., Lytvynenko, V. (eds) Lecture Notes in Computational Intelligence and Decision Making. ISDMCI 2021. Lecture Notes on Data Engineering and Communications Technologies, vol 77. Springer, Cham. https://doi.org/10.1007/978-3-030-82014-5_22

Download citation

Publish with us

Policies and ethics