Skip to main content

Baseline Wander Correction of the Electrocardiogram Signals for Effective Preprocessing

  • Conference paper
  • First Online:
Lecture Notes in Computational Intelligence and Decision Making (ISDMCI 2021)

Abstract

Thus, to effectively solve the problem of eliminating the ECG baseline drift, it is necessary to filter the ECG signal. In this study for solve the problem of eliminating the ECG baseline drift, various filters were used: a low-pass filters based on the forward and inverse discrete Fourier transform, Butterworth filter, median filter, Savitsky-Golay filter. The results obtained confirmed the efficiency of filtering harmonic noise based on forward and backward DFT on real data. The method makes it possible to implement a narrow-band stop filter in the range from 0 to the Nyquist frequency. In this case, the notch band can be less than 0.1% of the Nyquist frequency, which is important when processing ECG signals. The filtering result was evaluated by the appearance of the filtered ECG. The evaluation criterion was the presence on the signal of characteristic fragments reflecting the work of the atria and ventricles of the heart in the form of a P wave, a QRS complex and a ST-T segment. A new method has been developed for filtering the ECG signal, which is based on the use of a sliding window containing 5 points. A linear function is constructed from a sample of five points using the least squares method. The value of the resulting linear function at the midpoint is used as the new value. Several iterations are performed to achieve a good result. To eliminate the baseline drift for the ECG fragment, it is proposed to use a special cubic interpolation spline. The algorithm for constructing the used spline requires solving a system of equations with a tridiagonal matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Texas Instruments. Low-Power, 1-Channel, 24-Bit Analog Front-End for Biopotential Measurements. http://www.ti.com/lit/ds/symlink/ads1291.pdf

  2. Bae, T., Lee, S., Kwon, K.: An adaptive median filter based on sampling rate for r-peak detection and major-arrhythmia analysis. Sensors 20(6144) (2020). https://doi.org/10.3390/s20216144

  3. Blanco-Velasco, M., Weng, B., Barner, K.: ECG signal denoising and baseline wander correction based on the empirical mode decomposition. Comput. Biol. Med. 38, 1–13 (2008). https://doi.org/10.1016/j.compbiomed.2007.06.003

    Article  Google Scholar 

  4. Goldberger, A., et al.: PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals. Circulation 101(23), 215–220 (2000). https://doi.org/10.1161/01.CIR.101.23.e215

    Article  Google Scholar 

  5. Haider, S.I., Alhussein, M.: Detection and classification of baseline-wander noise in ECG signals using discrete wavelet transform and decision tree classifier. Elektronika Ir Elektrotechnika 25(4), 47–57 (2019). https://doi.org/10.5755/j01.eie.25.4.23970

    Article  Google Scholar 

  6. Hao, W., Chen, Y., Xin, Y.: ECG baseline wander correction by mean-median filter and discrete wavelet transform. In: Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Boston, MA, USA, pp. 2712–2715 (2011). https://doi.org/10.1109/IEMBS.2011.6090744

  7. Hargittai, S.: Savitzky-Golay least-squares polynomial filters in ECG signal processing. In: Computers in Cardiology Lyon, France, pp. 763–766 (2005). https://doi.org/10.1109/CIC.2005.1588216

  8. Holmes, C., Fedewa, M., Winchester, L., Macdonald, H., Wind, S., Esco, M.: Validity of smartphone heart rate variability pre-and post-resistance exercise. Sensors 20, 5738 (2020). https://doi.org/10.3390/s20205738

    Article  Google Scholar 

  9. Jagtap, S., Uplane, M.: The impact of digital filtering to ECG analysis: butterworth filter application. In: International Conference on Communication, Information & Computing Technology (ICCICT), Mumbai, India, pp. 1–6 (2012). https://doi.org/10.1109/ICCICT.2012.6398145

  10. Krak, I., Pashko, A., Stelia, O., Barmak, O., Pavlov, S.: Selection parameters in the ECG signals for analysis of QRS complexes. In: Proceedings of the 1st International Workshop on Intelligent Information Technologies & Systems of Information Security, Khmelnytskyi, Ukraine, pp. 1–13 (2020). http://ceur-ws.org/Vol-2623/paper1.pdf

  11. Krak, I., Stelia, O., Pashko, A., Efremov, M., Khorozov, O.: Electrocardiogram classification using wavelet transformations. In: IEEE 15th International Conference on Advanced Trends in Radioelectronics, Telecommunications and Computer Engineering (TCSET), Lviv-Slavske, Ukraine, pp. 930–933 (2020). https://doi.org/10.1109/TCSET49122.2020.235573

  12. Krak, I., Stelia, O., Pashko, A., Khorozov, O.: Physiological signals analysis, recognition and classification using machine learning algorithms. In: Proceedings of The Third International Workshop on Computer Modeling and Intelligent Systems (CMIS 2020), Zaporizhzhia, Ukraine, pp. 955–965 (2020)

    Google Scholar 

  13. Krak, I., Stelia, O., Potapenko, L.: Controlled spline of third degree: approximation properties and practical application. In: Lytvynenko, V., Babichev, S., Wójcik, W., Vynokurova, O., Vyshemyrskaya, S., Radetskaya, S. (eds.) Lecture Notes in Computational Intelligence and Decision Making. ISDMCI 2019. AISC, vol. 1020, pp. 215–224. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26474-1_16

  14. Liu, M., Hao, H., Xiong, P., et al.: Constructing a guided filter by exploiting the Butterworth filter for ECG signal enhancement. J. Med. Biol. Eng. 38, 980–992 (2018). https://doi.org/10.1007/s40846-017-0350-1

    Article  Google Scholar 

  15. Meyer, C., Keiser, H.: Electrocardiogram baseline noise estimation and removal using cubic splines and state-space computation techniques. Comput. Biomed. Res. 10(5), 459–470 (1977). https://doi.org/10.1016/0010-4809(77)90021-0

    Article  Google Scholar 

  16. Nahiyan, K., Amin, A.: Removal of ECG baseline wander using Savitzky-Golay filter based method. Bangladesh J. Med. Phys. 8(1), 32–45 (2017). https://doi.org/10.3329/bjmp.v8i1.33932

    Article  Google Scholar 

  17. Pashko, A., Krak, I., Stelia, O., Khorozov, O.: Isolation of informative features for the analysis of QRS complex in ECG signals. In: Babichev, S., Lytvynenko, V., Wójcik, W., Vyshemyrskaya, S. (eds.) Lecture Notes in Computational Intelligence and Decision Making. ISDMCI 2020. AISC, vol. 1246, pp. 409–422. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-54215-3_26

  18. Savitzky, A.G.M.: Smoothing and differentiation of data by simplified least squares procedures. Anal. Chem. 36, 1627–1639 (1964)

    Article  Google Scholar 

  19. Sevakula, R., Au-Yeung, W., Singh, J., Heist, E., Isselbacher, E., Armoundas, A.: State-of-the-art machine learning techniques aiming to improve patient outcomes per-taining to the cardiovascular system. J. Am. Heart Assoc. 9(4), e013924 (2020). https://doi.org/10.1161/JAHA.119.013924

    Article  Google Scholar 

  20. Shabaan, M., Arshid, K., Yaqub, M., et al.: Survey: smartphone-based assessment of cardiovascular diseases using ECG and PPG analysis. BMC Med. Inform. Decis. Mak. 20(117) (2020). https://doi.org/10.1186/s12911-020-01199-7

  21. Upganlawar, I., Chowhan, H.: Pre-processing of ECG signals using filters. Int. J. Comput. Trends Technol. (IJCTT) 11(4), 166–168 (2014). https://doi.org/10.14445/22312803/IJCTT-V11P1355

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pashko, A., Krak, I., Stelia, O., Wojcik, W. (2022). Baseline Wander Correction of the Electrocardiogram Signals for Effective Preprocessing. In: Babichev, S., Lytvynenko, V. (eds) Lecture Notes in Computational Intelligence and Decision Making. ISDMCI 2021. Lecture Notes on Data Engineering and Communications Technologies, vol 77. Springer, Cham. https://doi.org/10.1007/978-3-030-82014-5_34

Download citation

Publish with us

Policies and ethics