Skip to main content

Quantitative Assessment of Forest Disturbance with C-Band SAR Data for Decision Making Support in Forest Management

  • Conference paper
  • First Online:
Lecture Notes in Computational Intelligence and Decision Making (ISDMCI 2021)

Abstract

Recently, forest disturbance regimes have intensified all over the world. The usage of Synthetic-aperture radar (SAR) data has proven as a comprehensive tool for mapping forest disturbance that has a natural or human-induced origin and a wide spatiotemporal range. It has become an important component in many applications related to decision-making for sustainable forest management. In this research, we developed a methodologic framework providing detection and quantitative assessment of forest disturbance using C-band SAR data for decision-making support in forest management. Herein, we propose a method to analyze LAI changes over a certain period that reliably indicates the transformations of a forest canopy. Then, asymmetrical formalization of expert knowledge using the AHP and Gompertz model allows not only forest disturbance detection that occurs but also its assessment in the context of the levels of impact. The framework was applied in assessing short-term forest disturbance in the Pushcha-Voditsky forest. The map of the spatial distribution of forest canopy change impact within the Pushcha-Vodytsia study area during 2017–2020 was obtained. The proposed framework contributes to the decision-making process in forest management and may provide a quick response to abrupt forest disturbances in those atmospheric conditions when optical remote sensing is helpless.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ballère, M., et al.: SAR data for tropical forest disturbance alerts in french guiana: Benefit over optical imagery. Remote Sens. Environ. 252, 112159 (2021). https://doi.org/10.1016/j.rse.2020.112159

  2. Balshi, M.S., et al.: The role of historical fire disturbance in the carbon dynamics of the pan-boreal region: a process-based analysis. J. Geophys. Res. Biogeosci. 112(G2) (2021). https://doi.org/10.1029/2006JG000380

  3. Benítez, J., Delgado-Galván, X., Gutiérrez, J., Izquierdo, J.: Balancing consistency and expert judgment in AHP. Math. Comput. Model. 54(7), 1785–1790 (2011). https://doi.org/10.1016/j.mcm.2010.12.023

    Article  MathSciNet  MATH  Google Scholar 

  4. Bozóki, S., Dezső, L., Poesz, A., Temesi, J.: Inductive learning algorithms for complex systems modeling. Ann. Oper. Res. 211(1), 511–528 (2013). https://doi.org/10.1007/s10479-013-1328-1

  5. Burrough, P., McDonell, R.: Principles of Geographical Information Systems. Oxford University Press, New York (1998)

    Google Scholar 

  6. Clark, D.B.: The role of disturbance in the regeneration of neotropical moist forests. Reprod. Ecol. Trop. For. Plants 7, 291–315 (1990)

    Google Scholar 

  7. Durieux, A.M., et al.: Monitoring forest disturbance using change detection on synthetic aperture radar imagery. In: Applications of Machine Learning, vol. 11139, p. 1113916. International Society for Optics and Photonics (2019). https://doi.org/10.1117/12.2528945

  8. Filipponi, F.: Sentinel-1 GRD preprocessing workflow. In: Multidisciplinary Digital Publishing Institute Proceedings, vol. 18, p. 11 (2019)

    Google Scholar 

  9. Fournier, R.A., Hall, R.J. (eds.): Hemispherical Photography in Forest Science: Theory, Methods, Applications. MFE, vol. 28. Springer, Dordrecht (2017). https://doi.org/10.1007/978-94-024-1098-3

    Book  Google Scholar 

  10. Frazer, G.W., Canham, C.D., Lertzman, K.P.: Gap light analyzer (GLA), version 2.0: imaging software to extract canopy structure and gap light transmission indices from true-colour fisheye photographs, users manual and program documentation. Simon Fraser University, Burnaby, British Columbia, and The Institute of Ecosystem Studies, Millbrook, New York (1999)

    Google Scholar 

  11. Frison, P.L., et al.: Potential of sentinel-1 data for monitoring temperate mixed forest phenology. Remote Sens. 10(12), 2049 (2018). https://doi.org/10.3390/rs10122049

    Article  Google Scholar 

  12. Frolking, S., Palace, M.W., Clark, D., Chambers, J.Q., Shugart, H., Hurtt, G.C.: Forest disturbance and recovery: a general review in the context of spaceborne remote sensing of impacts on aboveground biomass and canopy structure. J. Geophys. Res. Biogeosci. 114(G2) (2009). https://doi.org/10.1029/2008JG000911

  13. Gualtieri, J.A.: The support vector machine (SCM) algorithm for supervised classification of hyperspectral remote sensing data. Kernel Methods Remote Sens. Data Anal. 3, 51–83 (2009). https://doi.org/10.1002/9780470748992.ch3

    Article  Google Scholar 

  14. Haralick, R.M., Shanmugam, K.: Textural feature for image classification. IEEE Trans. Syst. Man Cybern. 6, 610–621 (1973). https://doi.org/10.1109/TSMC.1973.4309314

    Article  Google Scholar 

  15. Hermosilla, T., Wulder, M.A., White, J.C., Coops, N.C., Hobart, G.W., Campbell, L.B.: Mass data processing of time series Landsat imagery: pixels to data products for forest monitoring. Int. J. Digit. Earth 9(11), 1035–1054 (2016). https://doi.org/10.1080/17538947.2016.1187673

    Article  Google Scholar 

  16. Hirschmugl, M., Deutscher, J., Sobe, C., Bouvet, A., Mermoz, S., Schardt, M.: Use of SAR and optical time series for tropical forest disturbance mapping. Remote Sens. 12(4), 727 (2020). https://doi.org/10.3390/rs12040727

    Article  Google Scholar 

  17. Jong, L.S., Pottier, E.: Polarimetric Radar Imaging from Basic to Applications (2009)

    Google Scholar 

  18. Jukić, D., Kralik, G., Scitovski, R.: Least-squares fitting Gompertz curve. J. Comput. Appl. Math. 169(2), 359–375 (2004). https://doi.org/10.1016/j.cam.2003.12.030

    Article  MathSciNet  MATH  Google Scholar 

  19. Lakyda, P., et al.: Impact of disturbances on the carbon cycle of forest ecosystems in Ukrainian Polissya. Forests 10(4), 337 (2019). https://doi.org/10.3390/f10040337

    Article  Google Scholar 

  20. Lei, Y., Lucas, R., Siqueira, P., Schmidt, M., Treuhaft, R.: Detection of forest disturbance with spaceborne repeat-pass SAR interferometry. IEEE Trans. Geosci. Remote Sens. 56(4), 2424–2439 (2017). https://doi.org/10.1109/TGRS.2017.2780158

    Article  Google Scholar 

  21. Myroniuk, V., et al.: Tracking rates of forest disturbance and associated carbon loss in areas of illegal amber mining in Ukraine using Landsat time series. Remote Sens. 12(14), 2235 (2020). https://doi.org/10.3390/rs12142235

    Article  Google Scholar 

  22. Ortiz-Urbina, E., González-Pachón, J., Diaz-Balteiro, L.: Decision-making in forestry: a review of the hybridisation of multiple criteria and group decision-making methods. Forests 10(5), 375 (2019). https://doi.org/10.3390/f10050375

    Article  Google Scholar 

  23. Parker, G.G.: Tamm review: leaf area index (LAI) is both a determinant and a consequence of important processes in vegetation canopies. Forest Ecol. Manage. 477, 118496 (2020). https://doi.org/10.1016/j.foreco.2020.118496

  24. Saaty, T.L.: Decision making with the analytic hierarchy process. Int. J. Serv. Sci. 1(1), 83–98 (2008). https://doi.org/10.1504/IJSSCI.2008.017590

    Article  Google Scholar 

  25. Satoh, D.: Model selection among growth curve models that have the same number of parameters. Cogent Math. Stat. 6(1), 1660503 (2019). https://doi.org/10.1080/25742558.2019.1660503

    Article  MATH  Google Scholar 

  26. Schelhaas, M.J., Nabuurs, G.J., Schuck, A.: Natural disturbances in the European forests in the 19th and 20th centuries. Glob. Change Biol. 9(11), 1620–1633 (2003). https://doi.org/10.1046/j.1365-2486.2003.00684.x

    Article  Google Scholar 

  27. Segura, M., Ray, D., Maroto, C.: Decision support systems for forest management: a comparative analysis and assessment. Comput. Electron. Agric. 101, 55–67 (2014). https://doi.org/10.1016/j.compag.2013.12.005

    Article  Google Scholar 

  28. Small, D., Schubert, A.: Guide to ASAR geocoding. ESA-ESRIN Technical Note RSL-ASAR-GC-AD, pp. 1–36 (2008)

    Google Scholar 

  29. Stankevich, S.A., Kozlova, A.A., Piestova, I.O., Lubskyi, M.S.: Leaf area index estimation of forest using sentinel-1 C-band SAR data. In: 2017 IEEE Microwaves, Radar and Remote Sensing Symposium (MRRS), pp. 253–256. IEEE (2017). https://doi.org/10.1109/MRRS.2017.8075075

  30. Tadono, T., et al.: Generation of the 30 m-mesh global digital surface model by ALOS prism. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 41 (2016). https://doi.org/10.5194/isprs-archives-XLI-B4-157-2016

  31. Takaku, J., Tadono, T., Doutsu, M., Ohgushi, F., Kai, H.: Updates of ‘AW3D30’ ALOS global digital surface model with other open access datasets. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 43, 183–189 (2020). https://doi.org/10.5194/isprs-archives-XLIII-B4-2020-183-2020

  32. Thom, D., Seidl, R.: Natural disturbance impacts on ecosystem services and biodiversity in temperate and boreal forests. Biol. Rev. 91(3), 760–781 (2016). https://doi.org/10.1111/brv.12193

    Article  Google Scholar 

  33. Wang, J., Wang, J., Zhou, H., Xiao, Z.: Detecting forest disturbance in Northeast China from GLASS LAI time series data using a dynamic model. Remote Sens. 9(12), 1293 (2017). https://doi.org/10.3390/rs9121293

    Article  Google Scholar 

  34. Zhu, Z.: Change detection using Landsat time series: a review of frequencies, preprocessing, algorithms, and applications. ISPRS J. Photogramm. Remote. Sens. 130, 370–384 (2017). https://doi.org/10.1016/j.isprsjprs.2017.06.013

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Kozlova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kozlova, A., Stankevich, S., Svideniuk, M., Andreiev, A. (2022). Quantitative Assessment of Forest Disturbance with C-Band SAR Data for Decision Making Support in Forest Management. In: Babichev, S., Lytvynenko, V. (eds) Lecture Notes in Computational Intelligence and Decision Making. ISDMCI 2021. Lecture Notes on Data Engineering and Communications Technologies, vol 77. Springer, Cham. https://doi.org/10.1007/978-3-030-82014-5_37

Download citation

Publish with us

Policies and ethics