Skip to main content

Tunable Activation Functions for Deep Neural Networks

  • Conference paper
  • First Online:
Lecture Notes in Computational Intelligence and Decision Making (ISDMCI 2021)

Abstract

The performance of artificial neural networks significantly depends on the choice of the nonlinear activation function of the neuron. Usually this choice comes down to an empirical one from a list of universal functions that have shown satisfactory results on most tasks. However this approach does not lead to optimal training in terms of model convergence over a certain number of epochs. We proposed tunable polynomial activation function for artificial neuron. Parameters of this function can be adjusted during learning procedure along with synaptic weights. The proposed function can take the form of universal ones due to its polynomial properties. Adjustable form tunable polynomial function leads to the fastest convergence of the model and more accurate training due to the possibility of using a smaller training step that has been shown experimentally. Improved convergence allows to apply tunable activation function to various deep learning problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Agostinelli, F., Hoffman, M., Sadowski, P., Baldi, P.: Learning activation functions to improve deep neural networks. arXiv preprint arXiv:1412.6830 (2014)

  2. Bodyanskiy, Y., Kulishova, N., Rudenko, O.: One model of formal neuron. Rep. Nat. Acad. Sci. Ukraine 4, 69–73 (2001)

    MATH  Google Scholar 

  3. Bottou, L., Bousquet, O.: The tradeoffs of large scale learning. In: Advances in Neural Information Processing Systems, pp. 161–168 (2008)

    Google Scholar 

  4. Cichocki, A., Unbehauen, R., Swiniarski, R.W.: Neural Networks for Optimization and Signal Processing, vol. 253. Wiley, New York (1993). https://doi.org/10.1016/0925-2312(94)90041-8

  5. Clevert, D.A., Unterthiner, T., Hochreiter, S.: Fast and accurate deep network learning by exponential linear units (elus). arXiv preprint arXiv:1511.07289 (2015)

  6. Cybenko, G.: Approximation by superpositions of a sigmoidal function. Math. Control Signals Systems 2(4), 303–314 (1989). https://doi.org/10.1007/BF02134016

    Article  MathSciNet  MATH  Google Scholar 

  7. Glorot, X., Bengio, Y.: Understanding the difficulty of training deep feedforward neural networks. In: Proceedings of the 13th International Conference on Artificial Intelligence and Statistics, pp. 249–256 (2010)

    Google Scholar 

  8. Glorot, X., Bordes, A., Bengio, Y.: Deep sparse rectifier neural networks. In: In: Proceedings of the 14th International Conference on Artificial Intelligence and Statistics, pp. 315–323 (2011)

    Google Scholar 

  9. Heaton, Y., Jeff, I.G., Bengio, Y., Courville, A.: Deep learning. Genetic programming and evolvable machines. Nature 19(1–2), 305–307 (2017). https://doi.org/10.1007/s10710-017-9314-z

  10. Goyal, M., Goyal, R., Lall, B.: Learning activation functions: a new paradigm of understanding neural networks. arXiv preprint arXiv:1906.09529 (2019)

  11. Graupe, D.: Deep Learning Neural Networks: Design and Case Studies. World Scientific Publishing Company (2016)

    Google Scholar 

  12. He, K., Zhang, X., Ren, S., Sun, J.: Delving deep into rectifiers: surpassing human-level performance on imagenet classification. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1026–1034 (2015). https://doi.org/10.1109/iccv.2015.123

  13. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016). https://doi.org/10.1109/cvpr.2016.90

  14. Hendrycks, D., Gimpel, K.: Gaussian error linear units (gelus). arXiv preprint arXiv:1606.08415 (2016)

  15. Hornik, K.: Approximation capabilities of multilayer feedforward networks. Neural Netw. 4(2), 251–257 (1991). https://doi.org/10.1016/0893-6080(91)90009-t

    Article  MathSciNet  Google Scholar 

  16. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  17. Krizhevsky, A., Hinton, G., et al.: Learning multiple layers of features from tiny images. Technical report, University of Toronto (2009)

    Google Scholar 

  18. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444 (2015). https://doi.org/10.1038/nature14539

    Article  Google Scholar 

  19. LeCun, Y., et al.: Backpropagation applied to handwritten zip code recognition. Neural Comput. 1(4), 541–551 (1989). https://doi.org/10.1162/neco.1989.1.4.541

    Article  Google Scholar 

  20. LeCun, Y., Cortes, C., Burges, C.: MNIST handwritten digit database. ATT Labs [Online]. Available: http://yann.lecun.com/exdb/mnist (2010)

  21. Lu, L., Shin, Y., Su, Y., Karniadakis, G.E.: Dying relu and initialization: theory and numerical examples. arXiv preprint arXiv:1903.06733 (2019). https://doi.org/10.4208/cicp.OA-2020-0165

  22. Lu, Z., Pu, H., Wang, F., Hu, Z., Wang, L.: The expressive power of neural networks: a view from the width. In: Advances in Neural Information Processing Systems, pp. 6231–6239 (2017)

    Google Scholar 

  23. Molina, A., Schramowski, P., Kersting, K.: Pade activation units: end-to-end learning of flexible activation functions in deep networks. arXiv preprint arXiv:1907.06732 (2019)

  24. Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: ICML (2010)

    Google Scholar 

  25. Schmidhuber, J.: Deep learning in neural networks: an overview. Neural Netw. 61, 85–117 (2015). https://doi.org/10.1016/j.neunet.2014.09.003

    Article  Google Scholar 

  26. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)

  27. Sonoda, S., Murata, N.: Neural network with unbounded activation functions is universal approximator. Appl. Comput. Harmonic Anal. 43(2), 233–268 (2017). https://doi.org/10.1016/j.acha.2015.12.005

    Article  MathSciNet  MATH  Google Scholar 

  28. Arai, K., Kapoor, S., Bhatia, R. (eds.): SAI 2020. AISC, vol. 1230. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-52243-8

  29. Xu, B., Wang, N., Chen, T., Li, M.: Empirical evaluation of rectified activations in convolutional network. arXiv preprint arXiv:1505.00853 (2015)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bohdan Bilonoh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bilonoh, B., Bodyanskiy, Y., Kolchygin, B., Mashtalir, S. (2022). Tunable Activation Functions for Deep Neural Networks. In: Babichev, S., Lytvynenko, V. (eds) Lecture Notes in Computational Intelligence and Decision Making. ISDMCI 2021. Lecture Notes on Data Engineering and Communications Technologies, vol 77. Springer, Cham. https://doi.org/10.1007/978-3-030-82014-5_43

Download citation

Publish with us

Policies and ethics