Skip to main content

An Expert System Prototype for the Early Diagnosis of Pneumonia

  • Conference paper
  • First Online:
Lecture Notes in Computational Intelligence and Decision Making (ISDMCI 2021)

Abstract

In this paper, an expert system model prototype based on Bayesian networks is proposed, which makes it possible to provide assistance to a doctor in the early diagnosis of a disease such as “pneumonia”. We designed a static Bayesian network with five key variables to obtain the probabilistic inference of the resulting node that determines the presence or absence of disease in a patient. We consulted with medical experts when selecting and quantifying input and output variables. When constructing a Bayesian model and conducting scenario analysis for a better prognosis of the diagnosis, we consulted with the attending physicians.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bidyuk, P.I., Terentev, O.M.: Zastosuvannya bayesivskogo entrance to medical diagnostics. In: Materials of the 11th International Conference on Automatic Control, vol. 3, p. 32 (2004)

    Google Scholar 

  2. Bidyuk, P.I., Terentyev, A.N., Hasanov, A.S.: Construction and teaching methods of Bayesian networks. Cybern. Syst. Anal. 4, 133–147 (2005)

    Google Scholar 

  3. Burnum, J.F.: Medical diagnosis through semiotics: giving meaning to the sign. Ann. Intern. Med 119(9), 939–943 (1993)

    Article  Google Scholar 

  4. Castillo, E.F., Gutierrez, J.M., Hadi, A.S.: Sensitivity analysis in discrete Bayesian networks. IEEE Trans. Syst. Man Cybern. Part A Syst. Hum. 27(4), 412–423 (1997)

    Article  Google Scholar 

  5. Cheeseman, P., Freeman, D., Kelly, M., Taylor, W., Stutz, J.: Bayesian classification. In: Proceedings of AAAI, St. Paul, pp. 607–611 (1988)

    Google Scholar 

  6. Cofino, A.S., Cano, R., Sordo, C., Gutierrez, J.M.: Bayesian networks for probabilistic weather prediction. In: Proceedings of The 15th European Conference On Artificial Intelligence. IOS Press, pp. 695–700 (2002)

    Google Scholar 

  7. Cooper, G.F.: Current research directions in the development of expert systems based on belief networks. Appl. Stochast. Models Data Anal. 5, 39–52 (1989)

    Article  Google Scholar 

  8. Dagum, P., Luby, M.: Approximating probabilistic inference in Bayesian belief networks is NP-hard. Artif. Intell. 45, 141–153 (1993)

    Article  MathSciNet  Google Scholar 

  9. Grunwald, P.: A tutorial introduction to the minimum description length principle. In: Advances in Minimum Description Length. Theory and Applications. MIT Press, Cambridge (2005)

    Google Scholar 

  10. Hautaniemi, S.K.: Target identification with Bayesian networks. Master of science thesis (2000). www.cs.tut.fi/~samba/Publications

  11. Krak, I., Barmak, O., Radiuk, P.: Information technology for early diagnosis of pneumonia on individual radiographs. In: Proceedings of the 3rd International Conference on Informatics and Data-Driven Medicine (IDDM-2020), vol. 2753, pp. 11–21 (2020)

    Google Scholar 

  12. Krak, I., Barmak, O., Radiuk, P.: Detection of early pneumonia on individual CT scans with dilated convolutions. In: Proceedings of the 2nd International Workshop on Intelligent Information Technologies and Systems of Information Security with CEUR-WS, vol. 2853, pp. 214–227 (2021)

    Google Scholar 

  13. Leach, R.M.: Acute and Critical Care Medicine at a Glance. Wiley-Blackwell, New York (2009)

    Google Scholar 

  14. Lucas, P.: Bayesian networks in medicine: a model-based approach to medical decision making (2001). 10.1.1.22.4103

    Google Scholar 

  15. Lytvynenko, V., et al.: Dynamic Bayesian networks application for evaluating the investment projects effectiveness. In: Babichev, S., Lytvynenko, V., Wójcik, W., Vyshemyrskaya, S. (eds.) ISDMCI 2020. AISC, vol. 1246, pp. 315–330. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-54215-3_20

    Chapter  Google Scholar 

  16. Lytvynenko, V., et al.: Dynamic Bayesian networks in the problem of localizing the narcotic substances distribution. In: Shakhovska, N., Medykovskyy, M.O. (eds.) CSIT 2019. AISC, vol. 1080, pp. 421–438. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-33695-0_29

    Chapter  Google Scholar 

  17. Lytvynenko, V., Voronenko, M., Nikytenko, D., Savina, N., Naumov, O.: Assessing the possibility of a country’s economic growth using dynamic Bayesian network models. In: IEEE-2019 14th International Scientific and Technical Conference on Computer Sciences and Information Technologies (CSIT), vol. CFP19D36-PRT, pp. 60–63 (2020)

    Google Scholar 

  18. Mackenzie, G.: The definition and classification of pneumonia. Pneumonia 8, 14 (2016). https://doi.org/10.1186/s41479-016-0012-z

  19. McLuckie, A.: Respiratory Disease and Its Management. Springer, New York (2009). https://doi.org/10.1007/978-1-84882-095-1

    Book  Google Scholar 

  20. Singh, M., Provan, G.: A comparison of induction algorithms for selective and non-selective Bayesian classifiers. In: International Conference on Machine Learning, pp. 497–505 (1995)

    Google Scholar 

  21. Stringer, J.R., Beard, C.B., Miller, R.F., Wakefield, A.E.: A new name (Pneumocystis jiroveci) for Pneumocystis from humans. Emerg. Infect. Dis. 7(9), 891–896 (2002)

    Article  Google Scholar 

  22. Suzuki, J.: Learning Bayesian belief networks based on the mdl principle: an efficient algorithm using the branch and bound technique. IEICE Trans. Inf. Syst. E-82-D, 356–367 (1999)

    Google Scholar 

  23. Suzuki, J.: Learning Bayesian belief networks based on the minimum description length principle: basic properties. In: IEICE Trans. Fundam. E82-A, 9 (1999)

    Google Scholar 

  24. Troldborg, M., Aalders, I., Towers, W., Hallett, P.D., et al.: Application of Bayesian belief networks to quantify and map areas at risk to soil threats: using soil compaction as an example. Soil Tillage Res. 132, 56–68 (2013)

    Google Scholar 

  25. Turuta, O., Perova, I., Deineko, A.: Evolving flexible neuro-fuzzy system for medical diagnostic tasks. Int. J. Comput. Sci. Mobile Comput. IJCSMC 4, 475–480 (2015)

    Google Scholar 

  26. Van der Gaag, L.C., Coupe, V.M.: Sensitivity analysis for threshold decision making with Bayesian belief net-works. In: AI*IA 99: Advances in Artificial Intelligence, vol. 1792, pp. 37–48 (2000)

    Google Scholar 

  27. Voronenko, M., et al.: Dynamic Bayesian networks application for economy competitiveness situational modelling. In: Advances in Intelligent Systems and Computing V. CSIT 2020. Advances in Intelligent Systems and Computing, vol. 1293, pp. 210–224 (2020)

    Google Scholar 

  28. World Health Organization: Pneumococcal vaccines. Wkly Epidemiol. Rec. 78(14), 110–119 (2003)

    Google Scholar 

  29. Zaichenko, O.Y., Zaichenko, Y.P.: Doslidzhennya Operations/Operations research. Word, Collection of tasks. Kiev (2007)

    Google Scholar 

  30. Zhang, Z., Kwok, J., Yeung, D.: Surrogate maximization (minimization) algorithms for adaboost and the logistic regression model. In: Proceedings of the Twenty-First International Conference on Machine Learning (ICML), p. 117 (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mariia Voronenko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Voronenko, M., Kovalchuk, O., Lytvynenko, L., Vyshemyrska, S., Krak, I. (2022). An Expert System Prototype for the Early Diagnosis of Pneumonia. In: Babichev, S., Lytvynenko, V. (eds) Lecture Notes in Computational Intelligence and Decision Making. ISDMCI 2021. Lecture Notes on Data Engineering and Communications Technologies, vol 77. Springer, Cham. https://doi.org/10.1007/978-3-030-82014-5_49

Download citation

Publish with us

Policies and ethics