Skip to main content

Fuzzy Baselines to Stabilize Policy Gradient Reinforcement Learning

  • Conference paper
  • First Online:
Explainable AI and Other Applications of Fuzzy Techniques (NAFIPS 2021)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 258))

Included in the following conference series:

  • 626 Accesses

Abstract

Policy gradient methods are amongst the most efficient for on-policy, model-free reinforcement learning. However, they suffer from high variance in gradient updates, making them unstable during training. Subtracting a baseline from the rewards is an effective strategy to reduce variance, such as in actor-critic models. This work presents a variation of the actor-critic model that uses a fuzzy system instead of a neural network to estimate the state value function. The fuzzy value approximation is inspired by previous value-based methods such as fuzzy Q-learning. Experiments with the cart-pole benchmark show that fuzzy value approximation outperforms several reinforcement learning algorithms in terms of sample-efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://github.com/gabisurita/fuzzy-rl-baselines.

References

  1. Berenji, H.: Fuzzy q-learning: a new approach for fuzzy dynamic programming. In: Proceedings of 1994 IEEE 3rd International Fuzzy Systems Conference, vol. 1, pp. 486–491 (1994). https://doi.org/10.1109/FUZZY.1994.343737

  2. Botvinick, M., Ritter, S., Wang, J.X., Kurth-Nelson, Z., Blundell, C., Hassabis, D.: Reinforcement learning, fast and slow. Trends Cogn. Sci. 23(5), 408–422 (2019)

    Article  Google Scholar 

  3. Brockman, G., et al.: Openai gym. arXiv preprint arXiv:1606.01540 (2016)

  4. Cooper, M.G., Vidal, J.J.: Genetic design of fuzzy controllers: the cart and jointed-pole problem. In: Proceedings of 1994 IEEE 3rd International Fuzzy Systems Conference, pp. 1332–1337. IEEE (1994)

    Google Scholar 

  5. Duan, Y., et al.: One-shot imitation learning. In: Guyon, I., et al. (eds.) Advances in Neural Information Processing Systems, vol. 30, pp. 1087–1098. Curran Associates, Inc. (2017). http://papers.nips.cc/paper/6709-one-shot-imitation-learning.pdf

  6. Geist, M., Piot, B., Pietquin, O.: Is the bellman residual a bad proxy? In: Advances in Neural Information Processing Systems, pp. 3205–3214 (2017)

    Google Scholar 

  7. Glorennec, P., Jouffe, L.: Fuzzy q-learning. In: Proceedings of 6th International Fuzzy Systems Conference, vol. 2, pp. 659–662 (1997). https://doi.org/10.1109/FUZZY.1997.622790

  8. Haarnoja, T., Zhou, A., Abbeel, P., Levine, S.: Soft actor-critic: off-policy maximum entropy deep reinforcement learning with a stochastic actor. arXiv preprint arXiv:1801.01290 (2018)

  9. Henderson, P., Islam, R., Bachman, P., Pineau, J., Precup, D., Meger, D.: Deep reinforcement learning that matters (2019)

    Google Scholar 

  10. Hussein, A., Gaber, M.M., Elyan, E., Jayne, C.: Imitation learning: a survey of learning methods. ACM Comput. Surv. 50(2), 1–35 (2017). https://doi.org/10.1145/3054912

    Article  Google Scholar 

  11. Jouffe, L.: Actor-critic learning based on fuzzy inference system. In: 1996 IEEE International Conference on Systems, Man and Cybernetics. Information Intelligence and Systems (Cat. No. 96CH35929), vol. 1, pp. 339–344. IEEE (1996)

    Google Scholar 

  12. Jouffe, L.: Fuzzy inference system learning by reinforcement methods. IEEE Trans. Syst. Man Cybern.-Part C: Appl. Rev. 28(3), 338–355 (1998)

    Article  Google Scholar 

  13. Konda, V.R., Tsitsiklis, J.N.: Actor-critic algorithms. In: Advances in Neural Information Processing Systems, pp. 1008–1014. Citeseer (2000)

    Google Scholar 

  14. Kool, W., Van Hoof, H., Welling, M.: Attention, learn to solve routing problems! arXiv preprint arXiv:1803.08475 (2018)

  15. Li, G., Mueller, M., Casser, V., Smith, N., Michels, D.L., Ghanem, B.: Oil: observational imitation learning. arXiv preprint arXiv:1803.01129 (2018)

  16. Mnih, V., et al.: Playing atari with deep reinforcement learning. arXiv preprint arXiv:1312.5602 (2013)

  17. Mnih, V., et al.: Human-level control through deep reinforcement learning. Nature 518(7540), 529–533 (2015)

    Article  Google Scholar 

  18. Paszke, A., et al.: Pytorch: an imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., dAlché-Buc, A., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 32, pp. 8024–8035. Curran Associates, Inc. (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf

  19. Pedrycz, W., Gomide, F.: Fuzzy Systems Engineering: Toward Human-Centric Computing. Wiley, Hoboken (2007)

    Book  Google Scholar 

  20. Silver, D., et al.: Mastering the game of go with deep neural networks and tree search. Nature 529(7587), 484–489 (2016)

    Article  Google Scholar 

  21. Silver, D., Lever, G., Heess, N., Degris, T., Wierstra, D., Riedmiller, M.: Deterministic policy gradient algorithms (2014)

    Google Scholar 

  22. Sutton, R., Barto, A.: Reinforcement Learning: An Introduction. MIT Press, Cambridge (2018)

    MATH  Google Scholar 

  23. Sutton, R., McAllester, D., Singh, S., Mansour, Y.: Policy gradient methods for reinforcement learning with function approximation. In: Advances in Neural Information Processing Systems, pp. 1057–1063 (2000)

    Google Scholar 

  24. Wang, X.S., Cheng, Y.H., Yi, J.Q.: A fuzzy actor-critic reinforcement learning network. Inf. Sci. 177(18), 3764–3781 (2007)

    Article  Google Scholar 

  25. Wu, Y.H., Charoenphakdee, N., Bao, H., Tangkaratt, V., Sugiyama, M.: Imitation learning from imperfect demonstration. arXiv preprint arXiv:1901.09387 (2019)

  26. Zhang, P., et al.: Kogun: accelerating deep deinforcement learning via integrating human suboptimal knowledge. arXiv preprint arXiv:2002.07418 (2020)

Download references

Acknowledgements

The authors acknowledge the anonymous referees for their invaluable comments and suggestions to improve the paper. The first and second authors thank Loggi for the infrastructure and technical support. The last author is grateful to the Brazilian National Council for Scientific and Technological Development (CNPq) for grant 302467/2019-0.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriela Surita .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Surita, G., Lemos, A., Gomide, F. (2022). Fuzzy Baselines to Stabilize Policy Gradient Reinforcement Learning. In: Rayz, J., Raskin, V., Dick, S., Kreinovich, V. (eds) Explainable AI and Other Applications of Fuzzy Techniques. NAFIPS 2021. Lecture Notes in Networks and Systems, vol 258. Springer, Cham. https://doi.org/10.1007/978-3-030-82099-2_39

Download citation

Publish with us

Policies and ethics