Skip to main content

An Ensemble Fuzziness-Based Online Sequential Learning Approach and Its Application

  • Conference paper
  • First Online:
Knowledge Science, Engineering and Management (KSEM 2021)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 12815))

Abstract

Traditional deep learning algorithms are difficult to deploy on most IoT terminal devices due to their limited computing power. To solve this problem, this paper proposes a novel ensemble fuzziness-based online sequential learning approach to support the local update of terminal intelligent models and improve their prediction performance. Our method consists of two modules: server module and terminal module. The latter uploads the data collected in real-time to the server module, then the server module selects the most valuable samples and sends them back to the terminal module for the local update. Specifically, the server module uses the ensemble learning mechanism to filter data through multiple fuzzy classifiers, while the terminal module uses the online neural networks with random weights to update the local model. Extensive experimental results on ten benchmark data sets show that the proposed method outperforms other similar algorithms in prediction. Moreover, we apply the proposed method to solve the network intrusion detection problem, and the corresponding experimental results show that our method has better generalization ability than other existing solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gai, K., Qiu, M., Zhao, H., Sun, X.: Resource management in sustainable cyber-physical systems using heterogeneous cloud computing. IEEE Trans. Sustain. Comput. 3(2), 60–72 (2017)

    Article  Google Scholar 

  2. Guo, Y., Zhuge, Q., Hu, J., Qiu, M., Sha, E.H.M.: Optimal data allocation for scratch-pad memory on embedded multi-core systems. In: IEEE International Conference on Parallel Processing (ICPP), pp. 464–471 (2011)

    Google Scholar 

  3. Zhang, L., Qiu, M., Tseng, W.C., Sha, E.H.M.: Variable partitioning and scheduling for MPSoC with virtually shared scratch pad memory. J. Signal Process. Syst. 58(2), 247–265 (2010)

    Article  Google Scholar 

  4. Cao, W., Wang, X., Ming, Z., Gao, J.: A review on neural networks with random weights. Neurocomputing 275, 278–287 (2018)

    Article  Google Scholar 

  5. Niu, J., Liu, C., Gao, Y., Qiu, M.: Energy efficient task assignment with guaranteed probability satisfying timing constraints for embedded systems. IEEE Trans. Parallel Distrib. Syst. 25(8), 2043–2052 (2013)

    Article  Google Scholar 

  6. Gao, Y., Iqbal, S., Zhang, P., Qiu, M.: Performance and power analysis of high-density multi-GPGPU architectures: a preliminary case study. In: International Conference on High Performance Computing and Communications, pp. 66–71 (2015)

    Google Scholar 

  7. Huang, G.B., Zhu, Q.Y., Siew, C.K.: Extreme learning machine: theory and applications. Neurocomputing 70(1–3), 489–501 (2006)

    Article  Google Scholar 

  8. Liang, N.Y., Huang, G.B., Saratchandran, P., Sundararajan, N.: A fast and accurate online sequential learning algorithm for feedforward networks. IEEE Trans. Neural Netw. 17(6), 1411–1423 (2006)

    Article  Google Scholar 

  9. Mao, W., Wang, J., He, L., Tian, Y.: Online sequential prediction of imbalance data with two-stage hybrid strategy by extreme learning machine. Neurocomputing 261, 94–105 (2017)

    Article  Google Scholar 

  10. Zhang, H., Zhang, S., Yin, Y.: Online sequential ELM algorithm with forgetting factor for real applications. Neurocomputing 261, 144–152 (2017)

    Article  Google Scholar 

  11. Cao, W., Ming, Z., Xu, Z., Zhang, J., Wang, Q.: Online sequential extreme learning machine with dynamic forgetting factor. IEEE Access 7, 179746–179757 (2019)

    Article  Google Scholar 

  12. Chen, Y.T., Chuang, Y.C., Wu, A.Y.: Online extreme learning machine design for the application of federated learning. In: IEEE International Conference on Artificial Intelligence Circuits and Systems (AICAS), pp. 188–192 (2020)

    Google Scholar 

  13. Jiang, X., Liu, J., Chen, Y., Liu, D., Gu, Y., Chen, Z.: Feature adaptive online sequential extreme learning machine for lifelong indoor localization. Neural Comput. Appl. 27(1), 215–225 (2016)

    Article  Google Scholar 

  14. Wong, P.K., Wong, H.C., Vong, C.M., Xie, Z., Huang, S.: Model predictive engine air-ratio control using online sequential extreme learning machine. Neural Comput. Appl. 27(1), 79–92 (2014). https://doi.org/10.1007/s00521-014-1555-7

    Article  Google Scholar 

  15. Chen, C.P., Liu, Z.: Broad learning system: an effective and efficient incremental learning system without the need for deep architecture. IEEE Trans. Neural Netw. Learn. Syst. 29(1), 10–24 (2017)

    Article  MathSciNet  Google Scholar 

  16. Cao, W., Gao, J., Ming, Z., Cai, S., Shan, Z.: Fuzziness-based online sequential extreme learning machine for classification problems. Soft Comput. 22(11), 3487–3494 (2018). https://doi.org/10.1007/s00500-018-3021-4

    Article  Google Scholar 

  17. Duffner, S., Garcia, C.: An online backpropagation algorithm with validation error-based adaptive learning rate. In: de Sá, J.M., Alexandre, L.A., Duch, W., Mandic, D. (eds.) ICANN 2007, Part I. LNCS, vol. 4668, pp. 249–258. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74690-4_26

    Chapter  Google Scholar 

  18. Zadeh, L.A.: Fuzzy sets as a basis for a theory of possibility. Fuzzy Sets Syst. 1(1), 3–28 (1978)

    Article  MathSciNet  Google Scholar 

  19. Zadeh, L.A.: Probability measures of fuzzy events. J. Math. Anal. Appl. 23(2), 421–427 (1968)

    Article  MathSciNet  Google Scholar 

  20. De Luca, A., Termini, S.: A definition of a nonprobabilistic entropy in the setting of fuzzy sets theory. Inf. Control 20(4), 301–312 (1972)

    Article  MathSciNet  Google Scholar 

  21. Kaufmann, A.: Introduction to the theory of fuzzy subsets: fundamental theoretical elements. Academic Press (1975)

    Google Scholar 

  22. Ebanks, B.R.: On measures of fuzziness and their representations. J. Math. Anal. Appl. 94(1), 24–37 (1983)

    Article  MathSciNet  Google Scholar 

  23. Wang, X.Z., Xing, H.J., Li, Y., Hua, Q., Dong, C.R., Pedrycz, W.: A study on relationship between generalization abilities and fuzziness of base classifiers in ensemble learning. IEEE Trans. Fuzzy Syst. 23(5), 1638–1654 (2014)

    Article  Google Scholar 

  24. Lichman, M.: UCI machine learning repository. University of California, School of Information and Computer Science, Irvine. [OL] (2021). http://archive.ics.uci.edu/ml

  25. Qiu, M., Ming, Z., Wang, J., Yang, L.T., Xiang, Y.: Enabling cloud computing in emergency management systems. IEEE Cloud Comput. 1(4), 60–67 (2014)

    Article  Google Scholar 

  26. Dai, W., Qiu, M., Qiu, L., Chen, L., Wu, A.: Who moved my data? privacy protection in smartphones. IEEE Commun. Mag. 55(1), 20–25 (2017)

    Article  Google Scholar 

  27. NSL-KDD Data Set, [OL] (2021). http://nsl.cs.unb.ca/NSL-KDD/

  28. Ashfaq, R.A., Wang, X.Z., Huang, J.Z., Abbas, H., He, Y.L.: Fuzziness based semi-supervised learning approach for intrusion detection system. Inf. Sci. 378, 484–497 (2017)

    Article  Google Scholar 

  29. Cheng, Y., Liu, Y., Chen, T., Yang, Q.: Federated learning for privacy-preserving AI. Commun. ACM 63(12), 33–36 (2020)

    Article  Google Scholar 

Download references

Acknowledgement

This work was supported by National Natural Science Foundation of China (61836005) and Guangdong Science and Technology Department (2018B010107004).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Da-Chuan Li or Ye Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cao, WP. et al. (2021). An Ensemble Fuzziness-Based Online Sequential Learning Approach and Its Application. In: Qiu, H., Zhang, C., Fei, Z., Qiu, M., Kung, SY. (eds) Knowledge Science, Engineering and Management. KSEM 2021. Lecture Notes in Computer Science(), vol 12815. Springer, Cham. https://doi.org/10.1007/978-3-030-82136-4_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-82136-4_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-82135-7

  • Online ISBN: 978-3-030-82136-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics