Skip to main content

Towards Solving the Winograd Schema Challenge: Model-Free, Model-Based and a Spectrum in Between

  • Conference paper
  • First Online:
Knowledge Science, Engineering and Management (KSEM 2021)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 12816))

  • 2060 Accesses

Abstract

The Winograd Schema Challenge (WSC) has attracted much attention recently as common sense is recognized to be not only the key to human-level intelligence but also a bottleneck faced by recent progress. Although neural language models (LMs) have achieved state-of-the-art (SOTA) performance on WSC, they fall short on interpretability and robustness against adversarial attacks. Contrarily, methods with structured representation and explicit reasoning suffer from the difficulty of knowledge acquisition and the rigidness of representation. In this paper, we look back on the current model-free and model-based approaches, pointing out the missing ingredients towards solving the WSC. We report our preliminary exploration of formalizing the WSC problems using a variant of first-order language and our first-hand findings of indispensable capabilities of human-level commonsense reasoning. The issues we encounter suggest that a full spectrum of representation tools and reasoning abilities are called for.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Formulae in this paper are all universally quantified. For brevity, we omit the UNAs.

  2. 2.

    This solution only applies to deterministic actions without ramification; In our cases, we have no trouble with this limitation.

References

  1. Bender, D.: Establishing a human baseline for the Winograd schema challenge. In: MAICS, pp. 39–45 (2015)

    Google Scholar 

  2. Davis, E., Marcus, G.: Commonsense reasoning and commonsense knowledge in artificial intelligence. Commun. ACM 58(9), 92–103 (2015)

    Article  Google Scholar 

  3. Davis, E., Morgenstern, L., Ortiz, C.: The Winograd schema challenge (2016). https://cs.nyu.edu/~davise/papers/WinogradSchemas/WS.html

  4. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78800-3_24

    Chapter  Google Scholar 

  5. Golovin, D., Claßen, J., Schwering, C.: Reasoning about conditional beliefs for the Winograd schema challenge. In: COMMONSENSE 2017 (2017)

    Google Scholar 

  6. Gururangan, S., Swayamdipta, S., Levy, O., Schwartz, R., Bowman, S.R., Smith, N.A.: Annotation artifacts in natural language inference data. In: NAACL-HLT, pp. 107–112 (2018)

    Google Scholar 

  7. Kocijan, V., Cretu, A., Camburu, O., Yordanov, Y., Lukasiewicz, T.: A surprisingly robust trick for the Winograd schema challenge. In: ACL, pp. 4837–4842 (2019)

    Google Scholar 

  8. Lake, B.M., Ullman, T.D., Tenenbaum, J.B., Gershman, S.J.: Building machines that learn and think like people. Behav. Brain Sci. 40, e253 (2017)

    Article  Google Scholar 

  9. Lenat, D.B.: CYC: a large-scale investment in knowledge infrastructure. Commun. ACM 38(11), 32–38 (1995)

    Google Scholar 

  10. Levesque, H.J., Davis, E., Morgenstern, L.: The Winograd schema challenge. In: KR 2012(2012)

    Google Scholar 

  11. Liu, Q., Jiang, H., Ling, Z.H., Zhu, X., Wei, S., Hu, Y.: Combing context and commonsense knowledge through neural networks for solving Winograd schema problems. In: 2017 AAAI Spring Symposium Series (2017)

    Google Scholar 

  12. Liu, Y., et al.: RoBERTa: a robustly optimized BERT pretraining approach. arXiv:1907.11692 (2019)

  13. McCarthy, J.: Generality in artificial intelligence. Commun. ACM 30(12), 1030–1035 (1987)

    Article  MathSciNet  Google Scholar 

  14. McCarthy, J.: Notes on formalizing context. In: Proceedings of the 13th International Joint Conference on Artificial Intelligence - Volume 1, IJCAI 1993, pp. 555–560. Morgan Kaufmann Publishers Inc., San Francisco (1993)

    Google Scholar 

  15. Prakash, A., Sharma, A., Mitra, A., Baral, C.: Combining knowledge hunting and neural language models to solve the Winograd schema challenge. In: ACL, pp. 6110–6119 (2019)

    Google Scholar 

  16. Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., Sutskever, I.: Language models are unsupervised multitask learners. OpenAI Blog 1(8), 9 (2019)

    Google Scholar 

  17. Reiter, R.: Knowledge in Action: Logical Foundations for Specifying and Implementing Dynamical Systems. MIT Press, Cambridge (2001)

    Book  Google Scholar 

  18. Richard-Bollans, A., Álvarez, L.G., Cohn, A.G.: The role of pragmatics in solving the Winograd schema challenge. In: COMMONSENSE 2017 (2017)

    Google Scholar 

  19. Russell, S.J., Norvig, P.: Artificial Intelligence - A Modern Approach. Third International Edition. Pearson Education, London (2010)

    MATH  Google Scholar 

  20. Sakaguchi, K., Bras, R.L., Bhagavatula, C., Choi, Y.: Winogrande: an adversarial Winograd schema challenge at scale. In: AAAI 2020, pp. 8732–8740 (2020)

    Google Scholar 

  21. Sap, M., Rashkin, H., Chen, D., LeBras, R., Choi, Y.: SocialIQA: commonsense reasoning about social interactions. In: EMNLP (2019)

    Google Scholar 

  22. Schüller, P.: Tackling Winograd schemas by formalizing relevance theory in knowledge graphs. In: KR 2014 (2014)

    Google Scholar 

  23. Sharma, A., Vo, N.H., Aditya, S., Baral, C.: Towards addressing the Winograd schema challenge - building and using a semantic parser and a knowledge hunting module. IJCAI 2015, 1319–1325 (2015)

    Google Scholar 

  24. Trichelair, P., Emami, A., Trischler, A., Suleman, K., Cheung, J.C.K.: How reasonable are common-sense reasoning tasks: a case-study on the Winograd schema challenge and SWAG. In: EMNLP-IJCNLP, November 2019

    Google Scholar 

  25. Trinh, T.H., Le, Q.V.: A simple method for commonsense reasoning. arXiv (2018)

    Google Scholar 

  26. Tsuchiya, M.: Performance impact caused by hidden bias of training data for recognizing textual entailment. In: LREC 2018 (2018)

    Google Scholar 

  27. Wang, A., et al.: SuperGLUE: a stickier benchmark for general-purpose language understanding systems. In: NeurIPS 2019, pp. 3261–3275 (2019)

    Google Scholar 

  28. Zhang, H., Zhao, X., Song, Y.: WinoWhy: a deep diagnosis of essential commonsense knowledge for answering Winograd schema challenge. In: ACL 2020, pp. 5736–5745 (2020)

    Google Scholar 

Download references

Acknowledgement

We thank Prof. Yongmei Liu for her guidance and insightful advice, and we thank Yu Dong for his effort. We acknowledge support from the National Natural Science Foundation of China (No. 61572535) and the Guangdong Basic and Applied Basic Research Foundation (2020A1515010642).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhanhao Xiao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

He, W., Xiao, Z. (2021). Towards Solving the Winograd Schema Challenge: Model-Free, Model-Based and a Spectrum in Between. In: Qiu, H., Zhang, C., Fei, Z., Qiu, M., Kung, SY. (eds) Knowledge Science, Engineering and Management . KSEM 2021. Lecture Notes in Computer Science(), vol 12816. Springer, Cham. https://doi.org/10.1007/978-3-030-82147-0_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-82147-0_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-82146-3

  • Online ISBN: 978-3-030-82147-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics