Abstract
Inconsistency is one of the important issues in knowledge systems, especially with the advent of the world wide web. Given a context of inconsistency characterization, not all the primitive conflicts in an inconsistent knowledge base are independent of one another in many cases. The primitive conflicts tightly associated with each other should be considered as a whole in handling inconsistency. In this paper, we consider the modularity of inconsistency arising in a knowledge base, which provides a promising starting point for parallel inconsistency handling in very large knowledge bases. Then we propose a modularity-based approach to measuring inconsistency for knowledge bases.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Besnard, P.: Revisiting postulates for inconsistency measures. In: Fermé, E., Leite, J. (eds.) JELIA 2014. LNCS (LNAI), vol. 8761, pp. 383–396. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11558-0_27
Besnard, P.: Basic postulates for inconsistency measures. In: Hameurlain, A., Küng, J., Wagner, R., Decker, H. (eds.) Transactions on Large-Scale Data- and Knowledge-Centered Systems XXXIV. LNCS, vol. 10620, pp. 1–12. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-55947-5_1
Hansson, S.O., Wassermann, R.: Local change. Studia Logica 70(1), 49–76 (2002). https://doi.org/10.1023/A:1014654208944
Hunter, A., Konieczny, S.: Shapley inconsistency values. In: Doherty, P., Mylopoulos, J., Welty, C. (eds.) KR2006, pp. 249–259. AAAI Press (2006)
Hunter, A., Konieczny, S.: Measuring inconsistency through minimal inconsistent sets. In: Brewka, G., Lang, J. (eds.) KR08, pp. 358–366. AAAI Press (2008)
Hunter, A., Konieczny, S.: On the measure of conflicts: Shapley inconsistency values. Artif. Intell. 174(14), 1007–1026 (2010)
Jabbour, S., Ma, Y., Raddaoui, B.: Inconsistency measurement thanks to mus decomposition. In: Bazzan, A.L.C., Huhns, M.N., Lomuscio, A., Scerri, P. (eds.) AAMAS 2014, Paris, France, 5–9 May, 2014, pp. 877–884. IFAAMAS/ACM (2014)
Jabbour, S., Ma, Y., Raddaoui, B., Sais, L., Salhi, Y.: On structure-based inconsistency measures and their computations via closed set packing. In: Weiss, G., Yolum, P., Bordini, R.H., Elkind, E. (eds.) AAMAS 2015, Istanbul, Turkey, 4–8 May, 2015, pp. 1749–1750. ACM (2015)
Jabbour, S., Ma, Y., Raddaoui, B., Sais, L., Salhi, Y.: A MIS partition based framework for measuring inconsistency. In: Baral, C., Delgrande, J.P., Wolter, F. (eds.) KR 2016, Cape Town, South Africa, 25–29 April, 2016, pp. 84–93. AAAI Press (2016)
Jabbour, S., Sais, L.: Exploiting MUS structure to measure inconsistency of knowledge bases. In: Kaminka, G.A., et al. (eds.) ECAI 2016. Frontiers in Artificial Intelligence and Applications, vol. 285, pp. 991–998. IOS Press (2016)
Knight, K.: Measuring inconsistency. J. Philos. Logic 31(1), 77–98 (2002)
Konieczny, S., Lang, J., Marquis, P.: Quantifying information and contradiction in propositional logic through epistemic actions. In: Gottlob, G., Walsh, T. (eds.) Proceedings of the 18th International Joint Conference on Artificial Intelligence (IJCAI2003), pp. 106–111. Morgan Kaufmann (2003)
Liu, W., Mu, K.: Introduction to the special issue on theories of inconsistency measures and their applications. Int. J. Approx. Reasoning 89, 1–2 (2017)
Mu, K.: Responsibility for inconsistency. Int. J. Approx. Reasoning 61, 43–60 (2015)
Mu, K.: Measuring inconsistency with constraints for propositional knowledge bases. Artif. Intell. 259, 52–90 (2018)
Paris, J.: The Uncertain Reasoner’s Companion: A Mathematical Perspective, Cambridge Tracts in Theoretical Computer Science 39. Cambridge University Press (1994)
Paris, J., Vencovska, A.: Proof systems for probabilistic uncertain reasoning. J. Symbolic Logic 63(3), 1007–1039 (1998)
Priest, G.: Minimally inconsistent LP. Studia Logica 50(1), 321–331 (1991)
Priest, G.: The logic of paradox. J. Philos. Logic 8(1), 219–241 (1979)
Reiter, R.: A theory of diagnosis from first principles. Artif. Intell. 32(1), 57–95 (1987)
Thimm, M.: Measuring inconsistency in probabilistic knowledge bases. In: UAI 2009, Montreal, Canada, June 2009, pp. 530–537. AUAI Press (2009)
Acknowledgements
This work was partly supported by the National Natural Science Foundation of China under Grant No.61572002, No. 61690201, and No. 61732001.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Mu, K. (2021). The Modularity of Inconsistent Knowledge Bases with Application to Measuring Inconsistency. In: Qiu, H., Zhang, C., Fei, Z., Qiu, M., Kung, SY. (eds) Knowledge Science, Engineering and Management . KSEM 2021. Lecture Notes in Computer Science(), vol 12816. Springer, Cham. https://doi.org/10.1007/978-3-030-82147-0_26
Download citation
DOI: https://doi.org/10.1007/978-3-030-82147-0_26
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-82146-3
Online ISBN: 978-3-030-82147-0
eBook Packages: Computer ScienceComputer Science (R0)