Skip to main content

The Modularity of Inconsistent Knowledge Bases with Application to Measuring Inconsistency

  • Conference paper
  • First Online:
Knowledge Science, Engineering and Management (KSEM 2021)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 12816))

Abstract

Inconsistency is one of the important issues in knowledge systems, especially with the advent of the world wide web. Given a context of inconsistency characterization, not all the primitive conflicts in an inconsistent knowledge base are independent of one another in many cases. The primitive conflicts tightly associated with each other should be considered as a whole in handling inconsistency. In this paper, we consider the modularity of inconsistency arising in a knowledge base, which provides a promising starting point for parallel inconsistency handling in very large knowledge bases. Then we propose a modularity-based approach to measuring inconsistency for knowledge bases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Besnard, P.: Revisiting postulates for inconsistency measures. In: Fermé, E., Leite, J. (eds.) JELIA 2014. LNCS (LNAI), vol. 8761, pp. 383–396. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11558-0_27

    Chapter  Google Scholar 

  2. Besnard, P.: Basic postulates for inconsistency measures. In: Hameurlain, A., Küng, J., Wagner, R., Decker, H. (eds.) Transactions on Large-Scale Data- and Knowledge-Centered Systems XXXIV. LNCS, vol. 10620, pp. 1–12. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-55947-5_1

    Chapter  Google Scholar 

  3. Hansson, S.O., Wassermann, R.: Local change. Studia Logica 70(1), 49–76 (2002). https://doi.org/10.1023/A:1014654208944

    Article  MathSciNet  MATH  Google Scholar 

  4. Hunter, A., Konieczny, S.: Shapley inconsistency values. In: Doherty, P., Mylopoulos, J., Welty, C. (eds.) KR2006, pp. 249–259. AAAI Press (2006)

    Google Scholar 

  5. Hunter, A., Konieczny, S.: Measuring inconsistency through minimal inconsistent sets. In: Brewka, G., Lang, J. (eds.) KR08, pp. 358–366. AAAI Press (2008)

    Google Scholar 

  6. Hunter, A., Konieczny, S.: On the measure of conflicts: Shapley inconsistency values. Artif. Intell. 174(14), 1007–1026 (2010)

    Article  MathSciNet  Google Scholar 

  7. Jabbour, S., Ma, Y., Raddaoui, B.: Inconsistency measurement thanks to mus decomposition. In: Bazzan, A.L.C., Huhns, M.N., Lomuscio, A., Scerri, P. (eds.) AAMAS 2014, Paris, France, 5–9 May, 2014, pp. 877–884. IFAAMAS/ACM (2014)

    Google Scholar 

  8. Jabbour, S., Ma, Y., Raddaoui, B., Sais, L., Salhi, Y.: On structure-based inconsistency measures and their computations via closed set packing. In: Weiss, G., Yolum, P., Bordini, R.H., Elkind, E. (eds.) AAMAS 2015, Istanbul, Turkey, 4–8 May, 2015, pp. 1749–1750. ACM (2015)

    Google Scholar 

  9. Jabbour, S., Ma, Y., Raddaoui, B., Sais, L., Salhi, Y.: A MIS partition based framework for measuring inconsistency. In: Baral, C., Delgrande, J.P., Wolter, F. (eds.) KR 2016, Cape Town, South Africa, 25–29 April, 2016, pp. 84–93. AAAI Press (2016)

    Google Scholar 

  10. Jabbour, S., Sais, L.: Exploiting MUS structure to measure inconsistency of knowledge bases. In: Kaminka, G.A., et al. (eds.) ECAI 2016. Frontiers in Artificial Intelligence and Applications, vol. 285, pp. 991–998. IOS Press (2016)

    Google Scholar 

  11. Knight, K.: Measuring inconsistency. J. Philos. Logic 31(1), 77–98 (2002)

    Article  MathSciNet  Google Scholar 

  12. Konieczny, S., Lang, J., Marquis, P.: Quantifying information and contradiction in propositional logic through epistemic actions. In: Gottlob, G., Walsh, T. (eds.) Proceedings of the 18th International Joint Conference on Artificial Intelligence (IJCAI2003), pp. 106–111. Morgan Kaufmann (2003)

    Google Scholar 

  13. Liu, W., Mu, K.: Introduction to the special issue on theories of inconsistency measures and their applications. Int. J. Approx. Reasoning 89, 1–2 (2017)

    Article  MathSciNet  Google Scholar 

  14. Mu, K.: Responsibility for inconsistency. Int. J. Approx. Reasoning 61, 43–60 (2015)

    Article  MathSciNet  Google Scholar 

  15. Mu, K.: Measuring inconsistency with constraints for propositional knowledge bases. Artif. Intell. 259, 52–90 (2018)

    Article  MathSciNet  Google Scholar 

  16. Paris, J.: The Uncertain Reasoner’s Companion: A Mathematical Perspective, Cambridge Tracts in Theoretical Computer Science 39. Cambridge University Press (1994)

    Google Scholar 

  17. Paris, J., Vencovska, A.: Proof systems for probabilistic uncertain reasoning. J. Symbolic Logic 63(3), 1007–1039 (1998)

    Article  MathSciNet  Google Scholar 

  18. Priest, G.: Minimally inconsistent LP. Studia Logica 50(1), 321–331 (1991)

    Article  MathSciNet  Google Scholar 

  19. Priest, G.: The logic of paradox. J. Philos. Logic 8(1), 219–241 (1979)

    Article  MathSciNet  Google Scholar 

  20. Reiter, R.: A theory of diagnosis from first principles. Artif. Intell. 32(1), 57–95 (1987)

    Article  MathSciNet  Google Scholar 

  21. Thimm, M.: Measuring inconsistency in probabilistic knowledge bases. In: UAI 2009, Montreal, Canada, June 2009, pp. 530–537. AUAI Press (2009)

    Google Scholar 

Download references

Acknowledgements

This work was partly supported by the National Natural Science Foundation of China under Grant No.61572002, No. 61690201, and No. 61732001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kedian Mu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mu, K. (2021). The Modularity of Inconsistent Knowledge Bases with Application to Measuring Inconsistency. In: Qiu, H., Zhang, C., Fei, Z., Qiu, M., Kung, SY. (eds) Knowledge Science, Engineering and Management . KSEM 2021. Lecture Notes in Computer Science(), vol 12816. Springer, Cham. https://doi.org/10.1007/978-3-030-82147-0_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-82147-0_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-82146-3

  • Online ISBN: 978-3-030-82147-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics