Skip to main content

LogAttn: Unsupervised Log Anomaly Detection with an AutoEncoder Based Attention Mechanism

  • Conference paper
  • First Online:
Knowledge Science, Engineering and Management (KSEM 2021)

Abstract

System logs produced by modern computer systems are valuable resources for detecting anomalies, debugging performance issues, and recovering application failures. With the increasing scale and complexity of the log data, manual log inspection is infeasible and man-power expensive. In this paper, we proposed LogAttn, an autoencoder model that combines an encoder-decoder structure with an attention mechanism for unsupervised log anomaly detection. The unstructured normal log data is proceeded by a log parser that uses a semantic analyse and clustering algorithm to parse log data into a sequence of event count vectors and semantic vectors. The encoder combines deep neural networks with an attention mechanism that learns the weights of different features to form a latent feature representation, which is further used by a decoder to reconstruct the log event sequence. If the reconstruction error is above a predefined threshold, it detects an anomaly in the log sequence and reports the result to the administrator. We conduct extensive experiments based on three real-world log datasets, which show that LogAttn achieves the best comprehensive performance compared to the state-of-the-art methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Arora, S., Liang, Y., Ma, T.: A simple but tough-to-beat baseline for sentence embeddings. In: International Conference on Learning Representations (ICLR 2017) (2017)

    Google Scholar 

  2. Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014)

  3. Bai, S., Kolter, J.Z., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv preprint arXiv:1803.01271 (2018)

  4. Breier, J., Branišová, J.: Anomaly detection from log files using data mining techniques. In: Kim, Kuinam J. (ed.) Information Science and Applications. LNEE, vol. 339, pp. 449–457. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46578-3_53

    Chapter  Google Scholar 

  5. Chen, M., Zheng, A.X., Lloyd, J., Jordan, M.I., Brewer, E.: Failure diagnosis using decision trees. In: International Conference on Autonomic Computing (2004)

    Google Scholar 

  6. Du, M., Li, F., Zheng, G., Srikumar, V.: Deeplog: anomaly detection and diagnosis from system logs through deep learning. In: Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security, pp. 1285–1298 (2017)

    Google Scholar 

  7. Erven, T., Harremoës, P.: Rényi divergence and kullback-leibler divergence. IEEE Trans. Inf. Theory 60, 3797–3820 (2014)

    Article  Google Scholar 

  8. Ester, M., Kriegel, H., Sander, J., Xu, X.: A density-based algorithm for discovering clusters in large spatial databases with noise. In: Proceedings of the Second International Conference on Knowledge Discovery and Data Mining (KDD 1996) (1996)

    Google Scholar 

  9. Fu, Q., Lou, J.G., Wang, Y., Li, J.: Execution anomaly detection in distributed systems through unstructured log analysis. In: IEEE international conference on data mining (ICDM 2009), pp. 149–158. IEEE (2009)

    Google Scholar 

  10. Gai, K., Qiu, M., Zhao, H., Sun, X.: Resource management in sustainable cyber-physical systems using heterogeneous cloud computing. IEEE Trans. Sustain. Comput. 3, 60–72 (2018)

    Article  Google Scholar 

  11. Han, J., Kamber, M.: Data Mining: Concepts and Techniques.Morgan Kaufmann, Massachusetts (2011)

    Google Scholar 

  12. He, P., Zhu, J., He, S., Li, J., Lyu, M.R.: Towards automated log parsing for large-scale log data analysis. IEEE Trans. Dependable Secure Comput. 15(6), 931–944 (2017)

    Article  Google Scholar 

  13. He, P., Zhu, J., Zheng, Z., Lyu, M.R.: Drain: an online log parsing approach with fixed depth tree. In: IEEE International Conference on Web Services, pp. 33–40. IEEE (2017)

    Google Scholar 

  14. He, S., Lin, Q., Lou, J.G., Zhang, H., Lyu, M.R., Zhang, D.: Identifying impactful service system problems via log analysis. In: 26th ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of Software Engineering, pp. 60–70 (2018)

    Google Scholar 

  15. He, S., Zhu, J., He, P., Lyu, M.R.: Experience report: system log analysis for anomaly detection. In: IEEE 27th International Symposium on Software Reliability Engineering (ISSRE 2016), pp. 207–218. IEEE (2016)

    Google Scholar 

  16. Kabinna, S., Bezemer, C.-P., Shang, W., Syer, M.D., Hassan, A.E.: Examining the stability of logging statements. Empir. Softw. Eng. 23(1), 290–333 (2017). https://doi.org/10.1007/s10664-017-9518-0

    Article  Google Scholar 

  17. Khatuya, S., Ganguly, N., Basak, J., Bharde, M., Mitra, B.: Adele: anomaly detection from event log empiricism. In: IEEE Conference on Computer Communications (INFOCOM 2018), pp. 2114–2122. IEEE (2018)

    Google Scholar 

  18. Liang, Y., Zhang, Y., Xiong, H., Sahoo, R.: Failure prediction in ibm bluegene/l event logs. In: IEEE International Conference on Data Mining (ICDM 2007), pp. 583–588. IEEE (2007)

    Google Scholar 

  19. Lin, Q., Zhang, H., Lou, J.G., Zhang, Y., Chen, X.: Log clustering based problem identification for online service systems. In: IEEE/ACM 38th International Conference on Software Engineering Companion (ICSE-C 2016), pp. 102–111. IEEE (2016)

    Google Scholar 

  20. Lou, J.G., Fu, Q., Yang, S., Xu, Y., Li, J.: Mining invariants from console logs for system problem detection. In: USENIX Annual Technical Conference (ATC 2010), pp. 1–14 (2010)

    Google Scholar 

  21. Makanju, A.A., Zincir-Heywood, A.N., Milios, E.E.: Clustering event logs using iterative partitioning. In: Proceedings of the 15th ACM SIGKDD international conference on Knowledge discovery and data mining (KDD 2009), pp. 1255–1264 (2009)

    Google Scholar 

  22. Meng, W., Liu, Y., Zhu, Y., Zhang, S., Zhou, R.: Loganomaly: unsupervised detection of sequential and quantitative anomalies in unstructured logs. In: Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI 2019) (2019)

    Google Scholar 

  23. Oliner, A., Stearley, J.: What supercomputers say: a study of five system logs. In: IEEE/IFIP 37th International Conference on Dependable Systems and Networks (DSN 2007), pp. 575–584. IEEE (2007)

    Google Scholar 

  24. Pecchia, A., Cotroneo, D., Kalbarczyk, Z., Iyer, R.K.: Improving log-based field failure data analysis of multi-node computing systems. In: IEEE/IFIP 41st International Conference on Dependable Systems & Networks (DSN 2011), pp. 97–108. IEEE (2011)

    Google Scholar 

  25. Pennington, J., Socher, R., Manning, C.D.: Glove: global vectors for word representation. In: Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP 2014), pp. 1532–1543 (2014)

    Google Scholar 

  26. Siffer, A., Fouque, P.A., Termier, A., Largouët, C.: Anomaly detection in streams with extreme value theory. In: Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD 2017) (2017)

    Google Scholar 

  27. Tang, L., Li, T., Perng, C.S.: LogSig: generating system events from raw textual logs. In: Proceedings of the 20th ACM international conference on Information and knowledge management (CIKM 2011), pp. 785–794 (2011)

    Google Scholar 

  28. Xu, W., Huang, L., Fox, A., Patterson, D., Jordan, M.I.: Detecting large-scale system problems by mining console logs. In: Proceedings of the ACM SIGOPS 22nd symposium on Operating systems principles, pp. 117–132 (2009)

    Google Scholar 

  29. Zhang, X., Li, Z., Chen, J., He, X., Cheng, Q.: Robust log-based anomaly detection on unstable log data. In: Proceedings of the 27th ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of Software Engineering (2019)

    Google Scholar 

  30. Zhou, C., Paffenroth, R.C.: Anomaly detection with robust deep autoencoders. In: Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD 2017), pp. 665–674 (2017)

    Google Scholar 

Download references

Acknowledgment

This work was partially supported by the National Key R&D Program of China (Grant No. 2018YFB1004704), the National Natural Science Foundation of China (Grant Nos. 61972196, 61832008, 61832005), the Key R&D Program of Jiangsu Province, China (Grant No. BE2018116), the Collaborative Innovation Center of Novel Software Technology and Industrialization, and the Sino-German Institutes of Social Computing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenzhong Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, L. et al. (2021). LogAttn: Unsupervised Log Anomaly Detection with an AutoEncoder Based Attention Mechanism. In: Qiu, H., Zhang, C., Fei, Z., Qiu, M., Kung, SY. (eds) Knowledge Science, Engineering and Management. KSEM 2021. Lecture Notes in Computer Science(), vol 12817. Springer, Cham. https://doi.org/10.1007/978-3-030-82153-1_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-82153-1_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-82152-4

  • Online ISBN: 978-3-030-82153-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics