Abstract
With the removal of the hydatidiform mole it has been shown that the human chorionic gonadotropin (hCG) hormone levels drop exponentially in women diagnosed with Gestational Trophoblastic Disease (GTD). This papers aims to introduce a new method at forecasting the decrease of the hCG levels as this could reduce the number of weekly blood test that a patient would require throughout the one year of monitoring. The hCG levels are modeled as a vertically shifted exponential curve, and this paper proposes and demonstrates a mathematical solution to finding the best parameters for this model. The method is validated using synthetic data as well as real data, and the results show that it is reliable, with decent accuracy and speed.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Almufti, R., et al.: A critical review of the analytical approaches for circulating tumor biomarker kinetics during treatment. Ann. Oncol. 25(1), 41–56 (2014)
Ammar, G., Dayawansa, W., Martin, C.: Exponential interpolation: theory and numerical algorithms. Appl. Math. Comput. 41(3), 189–232 (1991)
Costigan, C., Tabirca, S., Coulter, J.: Mathematically modelling hCG in women with gestational trophoblastic disease using logarithmic transformations. In: 2016 UKSim-AMSS 18th International Conference on Computer Modelling and Simulation (UKSim), pp. 55–59. IEEE (2016)
Ehiwario, J., Aghamie, S.: Comparative study of bisection, Newton-Raphson and secant methods of root-finding problems. IOSR J. Eng. 4(04), 01–07 (2014)
Enderling, H., Chaplain, M.A.J.: Mathematical modeling of tumor growth and treatment. Curr. Pharm. Des. 20(30), 4934–4940 (2014)
Forsythe, G.E.: Computer methods for mathematical computations. Prentice-Hall Ser. Autom. Comput. 259 (1977)
Huang, S.J., Huang, C.L.: Control of an inverted pendulum using grey prediction model. IEEE Trans. Ind. Appl. 36(2), 452–458 (2000)
Kerestely, A., Costigan, C., Tabirca, S.: Vertically shifted exponential best-fit. In: Proceedings of the 35th International Business Information Management Association (IBIMA), Seville, Spain, pp. 13855–13868 (2020)
Phillips, G.M.: Interpolation and Approximation by Polynomials, vol. 14. Springer, Heidelberg (2003)
Pisal, N., Tidy, J., Hancock, B.: Gestational trophoblastic disease: is intensive follow up essential in all women? BJOG: Int. J. Obstet. Gynaecol. 111(12), 1449–1451 (2004)
Schoeberl, M.R.: A model for the behavior of \(\beta \)-hCG after evacuation of hydatidiform moles. Gynecol. Oncol. 105(3), 776–779 (2007)
Seckl, M.J., Sebire, N.J., Berkowitz, R.S.: Gestational trophoblastic disease. Lancet 376(9742), 717–729 (2010)
Soper, J.T.: Gestational trophoblastic disease. Obstet. Gynecol. 108(1), 176–187 (2006)
Szidarovszky, F., Yakowitz, S.J.: Principles and Procedures of Numerical Analysis, vol. 14. Springer, Heidelberg (2013)
Van Trommel, N., Massuger, L., Schijf, C., Sweep, C., Thomas, C., et al.: Early identification of persistent trophoblastic disease with serum hCG concentration ratios. Int. J. Gynecol. Cancer 18(2), 318–323 (2008)
Xiao, X., White, E.P., Hooten, M.B., Durham, S.L.: On the use of log-transformation vs. nonlinear regression for analyzing biological power laws. Ecology 92(10), 1887–1894 (2011)
You, B., et al.: Early prediction of treatment resistance in low-risk gestational trophoblastic neoplasia using population kinetic modelling of hCG measurements. Br. J. Cancer 108(9), 1810–1816 (2013)
You, B., et al.: Predictive values of hCG clearance for risk of methotrexate resistance in low-risk gestational trophoblastic neoplasias. Ann. Oncol. 21(8), 1643–1650 (2010)
Young, T., Coleman, R., Hancock, B., Drew, D., Wilson, P., Tidy, J., et al.: Predicting gestational trophoblastic neoplasia (GTN): is urine hCG the answer? Gynecol. Oncol. 122(3), 595–599 (2011)
Zwietering, M., Jongenburger, I., Rombouts, F., Van’t Riet, K.: Modeling of the bacterial growth curve. Appl. Environ. Microbiol. 56(6), 1875–1881 (1990)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Kerestely, A., Costigan, C., Holland, F., Tabirca, S. (2021). Theoretical Study of Exponential Best-Fit: Modeling hCG for Gestational Trophoblastic Disease. In: Qiu, H., Zhang, C., Fei, Z., Qiu, M., Kung, SY. (eds) Knowledge Science, Engineering and Management. KSEM 2021. Lecture Notes in Computer Science(), vol 12817. Springer, Cham. https://doi.org/10.1007/978-3-030-82153-1_35
Download citation
DOI: https://doi.org/10.1007/978-3-030-82153-1_35
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-82152-4
Online ISBN: 978-3-030-82153-1
eBook Packages: Computer ScienceComputer Science (R0)