Skip to main content

Faster Nonlocal UNet for Cell Segmentation in Microscopy Images

  • Conference paper
  • First Online:
Knowledge Science, Engineering and Management (KSEM 2021)

Abstract

Deep neural networks have shown great potential in medical image segmentation fields. Most of the current methods are based on UNet, which generates long-range dependence step by step by stacking a large number of local operations. However, global information cannot be effectively aggregated using only local operations. The nonlocal module is an effective method for obtaining global information, but the nonlocal block is always criticized for its exorbitant computation and GPU consumption. For the purpose of solving this problem, a faster nonlocal UNet (FN-UNet) is proposed for obtaining the long-range dependency of biomedical images through a more effective and efficient method. Inspired by the recently introduced nonlocal U-Nets and asymmetric nonlocal neural networks, we integrate the asymmetric fusion nonlocal block (AFNB) and asymmetric pyramid nonlocal block (APNB) into the proposed network. Additionally, thorough experiments are performed on the cell segmentation dataset of the ISBI Challenge. The results show that compared with the typical nonlocal UNet network, the proposed network can obtain better results on the basis of occupying less GPU memory and computation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Buades, A., Coll, B., Morel, J.M.: A non-local algorithm for image denoising. In: 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2005), vol. 2, pp. 60–65. IEEE (2005)

    Google Scholar 

  2. Chen, L.C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs. IEEE Trans. Pattern Anal. Mach. Intell. 40(4), 834–848 (2017)

    Article  Google Scholar 

  3. Fakhry, A., Zeng, T., Ji, S.: Residual deconvolutional networks for brain electron microscopy image segmentation. IEEE Trans. Med. Imaging 36(2), 447–456 (2016)

    Article  Google Scholar 

  4. He, K., Zhang, X., Ren, S., Sun, J.: Spatial pyramid pooling in deep convolutional networks for visual recognition. IEEE Trans. Pattern Anal. Mach. Intell. 37(9), 1904–1916 (2015)

    Article  Google Scholar 

  5. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  6. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift, pp. 448–456 (2015)

    Google Scholar 

  7. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  8. Krogh, A., Hertz, J.A.: A simple weight decay can improve generalization, pp. 950–957 (1992)

    Google Scholar 

  9. Lazebnik, S., Schmid, C., Ponce, J.: Beyond bags of features: spatial pyramid matching for recognizing natural scene categories. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2006), vol. 2, pp. 2169–2178. IEEE (2006)

    Google Scholar 

  10. Lee, K., Zung, J., Li, P., Jain, V., Seung, H.S.: Superhuman accuracy on the SNEMI3D connectomics challenge. arXiv preprint arXiv:1706.00120 (2017)

  11. Lin, G., Milan, A., Shen, C., Reid, I.: RefineNet: multi-path refinement networks for high-resolution semantic segmentation, pp. 1925–1934 (2017)

    Google Scholar 

  12. Liu, W., Rabinovich, A., Berg, A.C.: ParseNet: looking wider to see better. arXiv preprint arXiv:1506.04579 (2015)

  13. Maška, M., et al.: A benchmark for comparison of cell tracking algorithms. Bioinformatics 30(11), 1609–1617 (2014)

    Article  Google Scholar 

  14. Miao, Z., Fu, K., Sun, H., Sun, X., Yan, M.: Automatic water-body segmentation from high-resolution satellite images via deep networks. IEEE Geosci. Remote Sens. Lett. 15(4), 602–606 (2018)

    Article  Google Scholar 

  15. Paszke, A., et al.: Automatic differentiation in pytorch (2017)

    Google Scholar 

  16. Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation, pp. 234–241 (2015)

    Google Scholar 

  17. Ulman, V., et al.: An objective comparison of cell-tracking algorithms. Nat. Methods 14(12), 1141–1152 (2017)

    Article  Google Scholar 

  18. Vaswani, A., et al.: Attention is all you need. arXiv preprint arXiv:1706.03762 (2017)

  19. Wang, X., Girshick, R., Gupta, A., He, K.: Non-local neural networks, pp. 7794–7803 (2018)

    Google Scholar 

  20. Wang, Z., Zou, N., Shen, D., Ji, S.: Non-local U-nets for biomedical image segmentation, vol. 34, no. 04, pp. 6315–6322 (2020)

    Google Scholar 

  21. Yu, F., Wang, D., Shelhamer, E., Darrell, T.: Deep layer aggregation, pp. 2403–2412 (2018)

    Google Scholar 

  22. Zhang, Z., Zhang, X., Peng, C., Xue, X., Sun, J.: ExFuse: enhancing feature fusion for semantic segmentation, pp. 269–284 (2018)

    Google Scholar 

  23. Zhao, H., Shi, J., Qi, X., Wang, X., Jia, J.: Pyramid scene parsing network, pp. 2881–2890 (2017)

    Google Scholar 

  24. Zhu, Z., Xu, M., Bai, S., Huang, T., Bai, X.: Asymmetric non-local neural networks for semantic segmentation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 593–602 (2019)

    Google Scholar 

Download references

Acknowledgment

This work is supported by the Innovation Capacity Construction Project of Jilin Province Development and Reform Commission (2019C053-3), the Science & Technology Development Project of Jilin Province, China (20190302117GX) and the National Key Research and Development Program of China (No. 2020YFA0714103).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shengsheng Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lin, X., Wang, S. (2021). Faster Nonlocal UNet for Cell Segmentation in Microscopy Images. In: Qiu, H., Zhang, C., Fei, Z., Qiu, M., Kung, SY. (eds) Knowledge Science, Engineering and Management. KSEM 2021. Lecture Notes in Computer Science(), vol 12817. Springer, Cham. https://doi.org/10.1007/978-3-030-82153-1_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-82153-1_38

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-82152-4

  • Online ISBN: 978-3-030-82153-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics