Skip to main content

Finetuned YOLOv3 for Getting Four Times the Detection Speed

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 12817))

Abstract

Object detection is an exciting research area in computer vision, widely used in autonomous driving, face recognition, and drones. Due to the limitation of mobile devices, the size of object detection models is limited, and it is not easy to achieve the ideal balance between detection accuracy and detection speed. So reducing the model size and increasing the model detection speed becomes a trendy research topic. The Slice-Concat structure proposed in this paper does not require too many changes to YOLOv3 and YOLOv3-SPP, and the four times improvement in detection speed is obtained only by changing the width and height of the input feature map. While getting a 4-fold FPS improvement, the network model parameters remain essentially unchanged, and the computational effort becomes a quarter of that of the original network. The improved YOLO model can also obtain a larger batch size with the same image size, providing an excellent solution for training models on hardware-constrained devices.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Viola, P., Jones, M.: Rapid object detection using a boosted cascade of simple features[C]. In: Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001: IEEE (2001)

    Google Scholar 

  2. Girshick, R., et al.: Region-based convolutional networks for accurate object detection and segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 38(1), 142–158 (2015)

    Article  Google Scholar 

  3. Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection[C]. In: 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (cvpr'05): IEEE, pp. 886–893 (2005)

    Google Scholar 

  4. Felzenszwalb, P.F., et al.: Object detection with discriminatively trained part-based models. IEEE Trans. Pattern Anal. Mach. Intell. 32(9), 1627–1645 (2009)

    Article  Google Scholar 

  5. Felzenszwalb, P., McAllester, D., Ramanan, D.: A discriminatively trained, multiscale, deformable part model[C]. In: 2008 IEEE Conference on Computer Vision and Pattern Recognition: IEEE, pp. 1–8 (2008)

    Google Scholar 

  6. Felzenszwalb, P.F., Girshick, R.B., McAllester, D.: Cascade object detection with deformable part models[C]. In: 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition: IEEE, pp. 2241–2248 (2010)

    Google Scholar 

  7. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. Commun. ACM 60(6), 84–90 (2017)

    Article  Google Scholar 

  8. Girshick, R., et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 580–587 (2014)

    Google Scholar 

  9. He, K., Zhang, X., Ren, S., et al.: Spatial pyramid pooling in deep convolutional networks for visual recognition. IEEE Trans. Pattern Anal. Mach. Intell. 37(9), 1904–1916 (2015)

    Article  Google Scholar 

  10. Girshick, R.. Fast R-cnn[C]. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1440–1448 (2015)

    Google Scholar 

  11. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks.

    Google Scholar 

  12. Ren, S., et al.: Faster R-CNN: towards real-time object detection with region proposal networks. IEEE Trans. Pattern Anal. Mach. Intell. 39(6), 1137–1149 (2016)

    Article  Google Scholar 

  13. Lin, T., et al.: Feature pyramid networks for object detection[C]. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2117–2125 (2017)

    Google Scholar 

  14. He, K., et al.: Mask R-cnn[C]. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2961–2969 (2017)

    Google Scholar 

  15. Redmon, J., et al.: You only look once: unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 779–788 (2016)

    Google Scholar 

  16. Bochkovskiy, A., Wang, C., Liao, H.M.: Yolov4: Optimal Speed and Accuracy of Object Detection[J]. arXiv:2004.10934 (2020)

  17. Redmon, J., Farhadi, A.: Yolo9000: better, faster, stronger. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7263–7271 (2017)

    Google Scholar 

  18. Redmon, J., Farhadi, A.: Yolov3: an incremental improvement. arXiv:1804.02767 (2018)

  19. Liu, W., et al.: SSD: single shot multibox detector. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) Computer Vision – ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, October 11–14, 2016, Proceedings, Part I, pp. 21–37. Springer International Publishing, Cham (2016). https://doi.org/10.1007/978-3-319-46448-0_2

    Chapter  Google Scholar 

  20. Lin, T., et al.: Focal loss for dense object detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2980–2988 (2017)

    Google Scholar 

  21. Li, Y., et al.: Yolov3-lite: a lightweight crack detection network for aircraft structure based on depthwise separable convolutions. Appl. Sci. 9(18), 3781 (2019)

    Article  Google Scholar 

  22. Mao, Q., et al.: Mini-yolov3: real-time object detector for embedded applications. Ieee Access 7, 133529–133538 (2019)

    Article  Google Scholar 

  23. Ma, H., Liu, Y., Ren, Y., et al.: Detection of collapsed buildings in post-earthquake remote sensing images based on the improved Yolov3. Rem. Sens. 12(1), 44 (2020)

    Article  Google Scholar 

  24. Everingham, M., et al.: The pascal visual object classes challenge: a retrospective. Int. J. Comput. Vision 111(1), 98–136 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grant No. 61602161,61772180), Hubei Province Science and Technology Support Project (Grant No: 2020BAB012), The Fundamental Research Funds for the Research Fund of Key Lab of Traffic and Internet of Things (WUT: 2015III015-A03).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Wu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liu, X., Wu, J. (2021). Finetuned YOLOv3 for Getting Four Times the Detection Speed. In: Qiu, H., Zhang, C., Fei, Z., Qiu, M., Kung, SY. (eds) Knowledge Science, Engineering and Management. KSEM 2021. Lecture Notes in Computer Science(), vol 12817. Springer, Cham. https://doi.org/10.1007/978-3-030-82153-1_42

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-82153-1_42

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-82152-4

  • Online ISBN: 978-3-030-82153-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics