Skip to main content

Thematic Analysis of Twitter as a Platform for Knowledge Management

  • Conference paper
  • First Online:
Knowledge Science, Engineering and Management (KSEM 2021)

Abstract

The purpose of this study is to conduct a thematic analysis of Twitter-related publications in knowledge management (KM) discipline and explore different research themes of KM Twitter-related publications. These publications were retrieved from Web of Science (WoS) during time span of 2009–2020 and thematic analysis was conducted through VOSviewer. Different methodologies were used according to the nature of bibliometric analysis and explained in each section. Three themes were emerged from these publications indicating Twitter users’ explicit contribution in KM through big data and text mining, knowledge sharing through communities’ collaboration and KM through machine learning. This is the first bibliometric study to explore overall contribution of Twitter-related publications in KM field at a glance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Noor, S., Guo, Y., Shah, S.H.H., Nawaz, M.S., Butt, A.S.: Research synthesis and thematic analysis of twitter through bibliometric analysis. Int. J. Semant. Web Inform. Syst. (2019, forthcoming)

    Google Scholar 

  2. Fausto, S., Aventurier, P.: Scientific literature on Twitter as a subject research: findings based on bibliometric analysi. Handb. Twitter Res. 2015 (2016). https://doi.org/10.5281/zenodo.44882

  3. Kapoor, K.K., Tamilmani, K., Rana, N.P., Patil, P., Dwivedi, Y.K., Nerur, S.: Advances in social media research: past, present and future. Inform. Syst. Front. 20(3), 531–558 (2017). https://doi.org/10.1007/s10796-017-9810-y

    Article  Google Scholar 

  4. Chen, X., Wang, S., Tang, Y., Hao, T.: A bibliometric analysis of event detection in social media. Online Inf. Rev. 43(1), 29–52 (2019). https://doi.org/10.1108/OIR-03-2018-0068

    Article  Google Scholar 

  5. Zyoud, S.H., Sweileh, W.M., Awang, R., Al-Jabi, S.W.: Global trends in research related to social media in psychology: mapping and bibliometric analysis. Int. J. Ment. Health Syst. 12(1), 4 (2018). https://doi.org/10.1186/s13033-018-0182-6

    Article  Google Scholar 

  6. Noor, S., Guo, Y., Shah, S., Halepoto, H.: Bibliometric Analysis of Twitter Knowledge Management Publications Related to Health Promotion. In: Li, G., Shen, H.T., Yuan, Y., Wang, X., Liu, H., Zhao, X. (eds.) KSEM 2020. LNCS (LNAI), vol. 12274, pp. 341–354. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-55130-8_30

    Chapter  Google Scholar 

  7. Ford, D.P., Mason, R.M.: A multilevel perspective of tensions between knowledge management and social media. J. Organ. Comput. Electron. Commer. 23(1–2), 7–33 (2013). https://doi.org/10.1080/10919392.2013.748604

    Article  Google Scholar 

  8. Nisar, T.M., Prabhakar, G., Strakova, L.: Social media information benefits, knowledge management and smart organizations. J. Bus. Res. 94, 264–272 (2019). https://doi.org/10.1016/j.jbusres.2018.05.005

    Article  Google Scholar 

  9. Scuotto, V., Del Giudice, M., Omeihe, K.: SMEs and mass collaborative knowledge management: toward understanding the role of social media networks. Inform. Syst. Manag. 34(3), 280–290 (2017). https://doi.org/10.1080/10580530.2017.1330006

    Article  Google Scholar 

  10. Sigala, M., Chalkiti, K.: Knowledge management, social media and employee creativity. Int. J. Hosp. Manag. 45, 44–58 (2015). https://doi.org/10.1016/j.ijhm.2014.11.003

    Article  Google Scholar 

  11. Shah, S.H.H., Lei, S., Ali, M., Doronin, D., Hussain, S.T.: Prosumption: bibliometric analysis using HistCite and VOSviewer. Kybernetes 49(3), 1–24 (2019). https://doi.org/10.1108/K-12-2018-0696

    Article  Google Scholar 

  12. Shah, S.H.H., Noor, S., Ahmad, A.B., Butt, A.S., Lei, S.: Retrospective view and thematic analysis of value co-creation through bibliometric analysis. Total Qual. Manag. Bus. Excell., 1–25 (2021). https://doi.org/10.1080/14783363.2021.1890017

  13. Noor, S., Guo, Y., Shah, S., Philippe Fournier-Viger, M., Nawaz, S.: Analysis of public reactions to the novel coronavirus (COVID-19) outbreak on Twitter. Kybernetes 50(5), 1633–1653 (2020). https://doi.org/10.1108/K-05-2020-0258

    Article  Google Scholar 

  14. Pritchard, A.: Statistical bibliography or bibliometrics? J. Doc. 25(4), 348–349 (1969)

    Google Scholar 

  15. Van Eck, N.J., Waltman, L.: Appropriate similarity measures for author co-citation analysis. J. Am. Assoc. Inform. Sci. Technol. 59(10), 1653–1661 (2008). https://doi.org/10.1002/asi.20872

    Article  Google Scholar 

  16. Noor, S., Guo, Y., Shah, S., Saqib Nawaz, M., Butt, A.: Bibliometric analysis of social media as a platform for knowledge management. Int. J. Knowl. Manag. 16(3), 33–51 (2020). https://doi.org/10.4018/IJKM.2020070103

    Article  Google Scholar 

  17. Decker, R., Lenz, H.-J. (eds.): Advances in Data Analysis. SCDAKO, Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-70981-7

    Book  Google Scholar 

  18. Shah, S.H.H., Lei, S., Noor, S., Anjum, A.: Research synthesis and new directions of prosumption: a bibliometric analysis. Int. J. Inform. Manag. Sci. 31(1), 79–98 (2020). https://doi.org/10.6186/IJIMS.20200331(1).0005

    Article  Google Scholar 

  19. Nicolas-Rocca, T., Parrish, J.: Capturing and conveying chamorro cultural knowledge using social media. Int. J. Knowl. Manag. 9(3), 1–18 (2013). https://doi.org/10.4018/ijkm.2013070101

    Article  Google Scholar 

  20. Zhao, Y.W., van den Heuvel, W.-J., Ye, X.: Exploring Big Data in Small Forms: A Multi-layered Knowledge Extraction of Social Networks (2013)

    Google Scholar 

  21. Wang, W., Chen, L., Thirunarayan, K., Sheth, A.P.: Harnessing Twitter ‘big data’ for automatic emotion identification. In: Proceedings – 2012 ASE/IEEE International Conference on Privacy, Security, Risk and Trust and 2012 ASE/IEEE International Conference on Social Computing, SocialCom/PASSAT 2012, pp. 587–592 (2012). https://doi.org/10.1109/SocialCom-PASSAT.2012.119

  22. Okazaki, S., Díaz-Martín, A.M., Rozano, M., Menéndez-Benito, H.D.: Using twitter to engage with customers: a data mining approach. Internet Res. 25(3), 416–434 (2015). https://doi.org/10.1108/IntR-11-2013-0249

    Article  Google Scholar 

  23. Huang, Y., Zhou, S., Huang, K., Guan, J.: Boosting Financial Trend Prediction with Twitter Mood Based on Selective Hidden Markov Models. In: Renz, M., Shahabi, C., Zhou, X., Cheema, M.A. (eds.) DASFAA 2015. LNCS, vol. 9050, pp. 435–451. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-18123-3_26

    Chapter  Google Scholar 

  24. Aghababaei, S., Makrehchi, M.: Mining Twitter data for crime trend prediction. Intell. Data Anal. 22(1), 117–141 (2018). https://doi.org/10.3233/IDA-163183

    Article  Google Scholar 

  25. Valencia-García, R., Lagos-Ortiz, K., Alcaraz-Mármol, G., del Cioppo, J., Vera-Lucio, N. (eds.): CITI 2016. CCIS, vol. 658. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-48024-4

    Book  Google Scholar 

  26. Chaudhry, A.S.: Use of Social Media and Networks to Support Personal Knowledge Management: A Study of PKM Practices of Government Officers in Kuwait, pp. 136–139 (2013)

    Google Scholar 

  27. Kreiner, K., Immonen, A., Suominen, H.: Crisis Management Knowledge from Social Media, pp. 105–108 (2013). https://doi.org/10.1145/2537734.2537740

  28. Panahi, S., Watson, J., Partridge, H.: Information encountering on social media and tacit knowledge sharing. J. Inform. Sci. 42(4), 539–550 (2016). https://doi.org/10.1177/0165551515598883

    Article  Google Scholar 

  29. Abu-Salih, B., Wongthongtham, P., Kit, C.: Twitter mining for ontology-based domain discovery incorporating machine learning. J. Knowl. Manag. 22(5), 949–981 (2018). https://doi.org/10.1108/JKM-11-2016-0489

    Article  Google Scholar 

  30. Wang, A.H.: Detecting Spam Bots in Online Social Networking Sites: A Machine Learning Approach. In: Foresti, S., Jajodia, S. (eds.) DBSec 2010. LNCS, vol. 6166, pp. 335–342. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13739-6_25

    Chapter  Google Scholar 

  31. Porshnev, A., Redkin, I., Shevchenko, A.: Machine learning in prediction of stock market indicators based on historical data and data from twitter sentiment analysis. In: Proceedings - IEEE 13th International Conference on Data Mining Workshops, ICDMW 2013 pp. 440–444 (2013). https://doi.org/10.1109/ICDMW.2013.111

  32. Kassens-Noor, E.: Twitter as a teaching practice to enhance active and informal learning in higher education: The case of sustainable tweets. Act. Learn. High. Educ. 13(1), 9–12 (2012). https://doi.org/10.1177/1469787411429190

    Article  Google Scholar 

  33. Menkhoff, T., Chay, Y., Bengtsson, M., Jason Woodard, C., Gan, B.: Incorporating microblogging (“tweeting”) in higher education: lessons learnt in a knowledge management course. Comput. Human Behav. 51, 1295–1302 (2015). https://doi.org/10.1016/j.chb.2014.11.063

    Article  Google Scholar 

Download references

Funding

This research is financially supported by The National Key Research and Development Program of China (grant number 2018YFC0807105), National Natural Science Foundation of China (grant number 61462073) and Science and Technology Committee of Shanghai Municipality (STCSM) (under grant numbers 17DZ1101003, 18511106602 and 18DZ2252300).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi Guo .

Editor information

Editors and Affiliations

Ethics declarations

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Noor, S., Guo, Y., Shah, S.H.H., Halepoto, H. (2021). Thematic Analysis of Twitter as a Platform for Knowledge Management. In: Qiu, H., Zhang, C., Fei, Z., Qiu, M., Kung, SY. (eds) Knowledge Science, Engineering and Management. KSEM 2021. Lecture Notes in Computer Science(), vol 12817. Springer, Cham. https://doi.org/10.1007/978-3-030-82153-1_50

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-82153-1_50

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-82152-4

  • Online ISBN: 978-3-030-82153-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics