Skip to main content

Discovering Nonlinear Dynamics Through Scientific Machine Learning

  • Conference paper
  • First Online:
Intelligent Systems and Applications (IntelliSys 2021)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 294))

Included in the following conference series:

Abstract

Scientific Machine Learning (SciML) is a new multidisciplinary methodology that combines the data-driven machine learning models and the principle-based computational models to improve the simulations of scientific phenomenon and uncover new scientific rules from existing measurements. This article reveals the experience of using the SciML method to discover the nonlinear dynamics that may be hard to model or be unknown in the real-world scenario. The SciML method solves the traditional principle-based differential equations by integrating a neural network to accurately model the nonlinear dynamics while respecting the scientific constraints and principles. The paper discusses the latest SciML models and apply them to the oscillator simulations and experiment. Besides better capacity to simulate, and match with the observation, the results also demonstrate a successful discovery of the hidden physics in the pendulum dynamics using SciML.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Baker, N., et al.: Workshop report on basic research needs for scientific machine learning: core technologies for artificial intelligence, February 2019

    Google Scholar 

  2. Baydin, A.G., Pearlmutter, B.A., Radul, A.A., Siskind, J.M.: Automatic differentiation in machine learning: a survey. J. Mach. Learn. Res. 18(1), 5595–5637 (2017)

    MathSciNet  MATH  Google Scholar 

  3. Bezanson, J., Edelman, A., Karpinski, S., Shah, V.B.: Julia: a fresh approach to numerical computing. SIAM Rev. 59(1), 65–98 (2017)

    Article  MathSciNet  Google Scholar 

  4. Chang, B., Meng, L., Haber, E., Ruthotto, L., Begert, D., Holtham, E.: Reversible architectures for arbitrarily deep residual neural networks. In: AAAI (2018)

    Google Scholar 

  5. Chang, B., Meng, L., Haber, E., Tung, F., Begert, D.: Multi-level residual networks from dynamical systems view. In: Conference on ICLR (2018)

    Google Scholar 

  6. Chen, R.T.Q., Rubanova, Y., Bettencourt, J., Duvenaud, D.: Neural ordinary differential equations (2019)

    Google Scholar 

  7. Chen, R.T.Q., Rubanova, Y., Bettencourt, J., Duvenaud, D.K.: Neural ordinary differential equations. In: Bengio, S., Wallach, H., Larochelle, H., Grauman, K., Cesa-Bianchi, N., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 31, pp. 6571–6583. Curran Associates Inc. (2018)

    Google Scholar 

  8. Weinan, E.: A proposal on machine learning via dynamical systems. Commun. Math. Stat. 5, 1–11 (2017). https://doi.org/10.1007/s40304-017-0103-z

    Article  MathSciNet  MATH  Google Scholar 

  9. Mayers, D.F., Süli, E.: An Introduction to Numerical Analysis. Cambridge University Press, Cambridge (2003)

    MATH  Google Scholar 

  10. Fries, T.-P., Matthies, H.G.: A review of Petrov-Galerkin stabilization approaches and an extension to meshfree methods (2004)

    Google Scholar 

  11. Greydanus, S., Dzamba, M., Yosinski, J.: Hamiltonian neural networks (2019)

    Google Scholar 

  12. Griewank, A., Walther, A.: Evaluating Derivatives: Principles and Techniques of Algorithmic Differentiation, 2nd edn. SIAM, Philadelphia (2008)

    Book  Google Scholar 

  13. He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9908, pp. 630–645. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46493-0_38

    Chapter  Google Scholar 

  14. Kharazmi, E., Zhang, Z., Karniadakis, G.E.: Variational physics-informed neural networks for solving partial differential equations (2019)

    Google Scholar 

  15. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  16. Kolter, Z., Duvenaud, D., Johnson, M.: Deep implicit layers - neural ODEs, deep equilibirum models, and beyond

    Google Scholar 

  17. Li, Z., Shi, Z.: Deep residual learning and PDEs on manifold. CoRR, abs/1708.05115 (2017)

    Google Scholar 

  18. Lu, L., Meng, X., Mao, Z., Karniadakis, G.E.: DeepXDE: a deep learning library for solving differential equations. CoRR, abs/1907.04502 (2019)

    Google Scholar 

  19. Lu, Y., Zhong, A., Li, Q., Dong, B.: Beyond finite layer neural networks: bridging deep architectures and numerical differential equations. In: Proceedings of the 35th International Conference on Machine Learning (2018)

    Google Scholar 

  20. Mattheakis, M., Protopapas, P., Sondak, D., Di Giovanni, M., Kaxiras, E.: Physical symmetries embedded in neural networks (2020)

    Google Scholar 

  21. Mattheakis, M., Sondak, D., Protopapas, P.: Hamiltonian neural networks for solving differential equations. Preparation

    Google Scholar 

  22. Mohazzabi, P., Shankar, S.P.: Damping of a simple pendulum due to drag on its string. J. Appl. Math. Phys. 05(01), 122–130 (2017)

    Article  Google Scholar 

  23. Pang, G., Lu, L., Karniadakis, G.E.: fPINNs: fractional physics-informed neural networks. SIAM J. Sci. Comput. 41(4), A2603–A2626 (2019)

    Article  MathSciNet  Google Scholar 

  24. Paticchio, A., Scarlatti, T., Mattheakis, M., Protopapas, P., Brambilla, M.: Semi-supervised Neural Networks solve an inverse problem for modeling Covid-19 spread (2020)

    Google Scholar 

  25. Petzold, L., Li, S., Cao, Y., Serban, R.: Sensitivity analysis of differential-algebraic equations and partial differential equations. Comput. Chem. Eng. 30(10), 1553–1559 (2006)

    Article  Google Scholar 

  26. Pontryagin, L.S., Mishchenko, E.F., Boltyanskii, V.G., Gamkrelidze, R.V.: The Mathematical Theory of Optimal Processes. Wiley, New York (1962)

    MATH  Google Scholar 

  27. Rackauckas, C., et al.: Universal differential equations for scientific machine learning. arXiv preprint arXiv:2001.04385 (2020)

  28. Rackauckas, C., Nie, Q.: Differentialequations.jl-a performant and feature-rich ecosystem for solving differential equations in Julia. J. Open Res. Softw. 5(1) (2017)

    Google Scholar 

  29. Raissi, M., Perdikaris, P., Karniadakis, G.E.: Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. J. Comput. Phys. 378, 686–707 (2019)

    Article  MathSciNet  Google Scholar 

  30. Revels, J., Lubin, M., Papamarkou, T.: Forward-mode automatic differentiation in Julia. arXiv:1607.07892 [cs.MS] (2016)

  31. Shin, Y., Darbon, J., Karniadakis, G.E.: On the convergence and generalization of physics informed neural networks (2020)

    Google Scholar 

  32. Sonoda, S., Murata, N.: Double continuum limit of deep neural networks. In: ICML Workshop Principled Approaches to Deep Learning (2017)

    Google Scholar 

  33. Toth, P., Rezende, D.J., Jaegle, A., Racanière, S., Botev, A., Higgins, I.: Hamiltonian generative networks (2020)

    Google Scholar 

  34. Yang, L., Zhang, D., Karniadakis, G.E.: Physics-informed generative adversarial networks for stochastic differential equations. SIAM J. Sci. Comput. 42, A292–A317 (2020)

    Article  MathSciNet  Google Scholar 

  35. Zhang, D., Lu, L., Guo, L., Karniadakis, G.E.: Quantifying total uncertainty in physics-informed neural networks for solving forward and inverse stochastic problems. J. Comput. Phys. 397, 108850 (2019)

    Article  MathSciNet  Google Scholar 

  36. Zhang, X., Li, Z., Change Loy, C., Lin, D.: PolyNet: a pursuit of structural diversity in very deep networks. CoRR, abs/1611.05725 (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Huang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Huang, L., Vrinceanu, D., Wang, Y., Kulathunga, N., Ranasinghe, N. (2022). Discovering Nonlinear Dynamics Through Scientific Machine Learning. In: Arai, K. (eds) Intelligent Systems and Applications. IntelliSys 2021. Lecture Notes in Networks and Systems, vol 294. Springer, Cham. https://doi.org/10.1007/978-3-030-82193-7_17

Download citation

Publish with us

Policies and ethics