Skip to main content

Addressing Consumer Demands: A Manufacturing Collaboration Process Using Blockchain for Knowledge Representation

  • Conference paper
  • First Online:
Book cover Intelligent Systems and Applications (IntelliSys 2021)

Abstract

Under I4.0, the evolution of the manufacturing processes is supported by an increase of data that is available and produced by organisations, the digitalisation of manufacturing pipelines, and a paradigm shift in production (from mass production to mass personalisation). Additionally, organisations need to gather the necessary conditions to ensure their quick adaptation to a changing environment and replace reactiveness for proactivity. Collaboration can act as the foundation to an answer for the increase demand for customised products, with an open and transparent environment where information is shared, and actors can work together to solve a common problem. In this work we propose a model definition for an industrial collaboration network composed by a network of entities, with reasoning and interaction, that uses a blockchain for knowledge representation. Current definitions of MAS already include a representation of equipment, transportation, products, and organisations; our contribution proposes the inclusion of the consumer, represented by an agent, directly in the manufacturing process. This agent represents the preferences and needs of the consumer in product customisation scenarios which, together with the other agents, negotiate criteria and cooperate with each other. The network is composed by distinct types of agents, across multiple organisations, that share common objectives. We use Hyperledger Fabric to represent knowledge, assuring that the data is stored and shared with all entities, while keeping the information secure and assuring that it cannot be tampered with.

This work has been supported by FCT – Fundação para a Ciência e Tecnologia within the Project Scope: UIDB/04728/2020.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abeyratne, S.A., Monfared, R.P.: Blockchain ready manufacturing supply chain using distributed ledger. Int. J. Res. Eng. Technol. 5(9), 1–10 (2016)

    Article  Google Scholar 

  2. Adeyeri, M.K., Mpofu, K., Adenuga, O.T.: Integration of agent technology into manufacturing enterprise: a review and platform for industry 4.0. In: 2015 International Conference on Industrial Engineering and Operations Management (IEOM), pp. 1–10. IEEE (2015)

    Google Scholar 

  3. Agostini, L., Filippini, R.: Organizational and managerial challenges in the path toward industry 4.0. Eur. J. Innov. Manag. 22, 406–421 (2019)

    Article  Google Scholar 

  4. Aste, T., Tasca, P., Di Matteo, T.: Blockchain technologies: the foreseeable impact on society and industry. Computer 50(9), 18–28 (2017)

    Article  Google Scholar 

  5. Cachin, C., et al.: Architecture of the hyperledger blockchain fabric. In: Workshop on Distributed Cryptocurrencies and Consensus Ledgers, vol. 310 (2016)

    Google Scholar 

  6. Carneiro, D., Novais, P.: New applications of ambient intelligence. In: Ramos, C., Novais, P., Nihan, C.E., Corchado Rodríguez, J.M. (eds.) Ambient Intelligence - Software and Applications. AISC, vol. 291, pp. 225–232. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-07596-9_25

    Chapter  Google Scholar 

  7. Casado-Vara, R., Prieto, J., De la Prieta, F., Corchado, J.M.: How blockchain improves the supply chain: case study alimentary supply chain. Procedia Comput. Sci. 134, 393–398 (2018). The 15th International Conference on Mobile Systems and Pervasive Computing (MobiSPC 2018)/The 13th International Conference on Future Networks and Communications (FNC-2018)/Affiliated Workshops

    Article  Google Scholar 

  8. Christidis, K., Devetsikiotis, M.: Blockchains and smart contracts for the Internet of Things. IEEE Access 4, 2292–2303 (2016)

    Article  Google Scholar 

  9. Deloitte: Industry 4.0. Challenges and solutions for the digital transformation and use of exponential technologies, pp. 1–30. Deloitte (2015)

    Google Scholar 

  10. Dib, O., Brousmiche, K.-L., Durand, A., Thea, E., Hamida, E.B.: Consortium blockchains: overview, applications and challenges. Int. J. Adv. Telecommun. 11(1 & 2), 51–64 (2018)

    Google Scholar 

  11. Digital Transformation of Industrial Ecosystems (Unit A.4): Smart Manufacturing - Shaping Europe’s digital future, October 2020

    Google Scholar 

  12. Ghadimi, P., Toosi, F.G., Heavey, C.: A multi-agent systems approach for sustainable supplier selection and order allocation in a partnership supply chain. Eur. J. Oper. Res. 269(1), 286–301 (2018)

    Article  MathSciNet  Google Scholar 

  13. Ghadimi, P., Wang, C., Lim, M., Heavey, C.: Intelligent sustainable supplier selection using multi-agent technology: theory and application for industry 4.0 supply chains. Comput. Ind. Eng. 127, 588–600 (2019)

    Article  Google Scholar 

  14. Kang, H.S., et al.: Smart manufacturing: past research, present findings, and future directions. Int. J. Precis. Eng. Manuf.-Green Technol. 3(1), 111–128 (2016). https://doi.org/10.1007/s40684-016-0015-5

    Article  Google Scholar 

  15. Lee, J.: Industry 4.0 in big data environment. Ger. Harting Mag. 1(1), 8–10 (2013)

    Google Scholar 

  16. Lee, J., Bagheri, B., Kao, H.-A.: A cyber-physical systems architecture for industry 4.0-based manufacturing systems. Manuf. Lett. 3, 18–23 (2015)

    Article  Google Scholar 

  17. Lee, J., Kao, H.-A., Yang, S.: Service innovation and smart analytics for industry 4.0 and big data environment. Procedia CIRP 16, 3–8 (2014)

    Article  Google Scholar 

  18. Lin, I.-C., Liao, T.-C.: A survey of blockchain security issues and challenges. IJ Netw. Secur. 19(5), 653–659 (2017)

    Google Scholar 

  19. Du, M., Ma, X., Zhe, Z., Wang, X., Chen, Q.: A review on consensus algorithm of blockchain. In: 2017 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 2567–2572 (2017)

    Google Scholar 

  20. Monostori, L., et al.: Cyber-physical systems in manufacturing. CIRP Ann. 65(2), 621–641 (2016)

    Article  Google Scholar 

  21. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system. Bitcoin, April 2008

    Google Scholar 

  22. Nikraz, M., Caire, G., Bahri, P.A.: A methodology for the analysis and design of multi-agent systems using JADE. Technical report (2006)

    Google Scholar 

  23. Oliver, A.L.: On the duality of competition and collaboration: network-based knowledge relations in the biotechnology industry. Scand. J. Manag. 20(1–2), 151–171 (2004)

    Article  Google Scholar 

  24. Olsen, T., Tomlin, B.: Industry 4.0: Opportunities and challenges for operations management. Manuf. Serv. Oper. Manag. 22, 113–122 (2020)

    Article  Google Scholar 

  25. Schuh, G., Potente, T., Wesch-Potente, C., Weber, A.R., Prote, J.-P.: Collaboration mechanisms to increase productivity in the context of industrie 4.0. Procedia CIRP 19, 51–56 (2014)

    Article  Google Scholar 

  26. Shafiq, S.I., Sanin, C., Szczerbicki, E., Toro, C.: Virtual engineering object/virtual engineering process: a specialized form of cyber physical system for industrie 4.0. Procedia Comput. Sci. 60, 1146–1155 (2015). Proceedings of the 19th Annual Conference on Knowledge-Based and Intelligent Information & Engineering Systems, KES-2015, Singapore, September 2015

    Article  Google Scholar 

  27. Stevens, G.C.: Integrating the supply chain. Int. J. Phys. Distrib. Mater. Manag. 19(8), 3–8 (1989)

    Google Scholar 

  28. Stone, P., Veloso, M.: Multiagent systems: a survey from a machine learning perspective. Auton. Robots 8, 345–383 (2000). https://doi.org/10.1023/A:1008942012299

    Article  Google Scholar 

  29. Szabo, N.: Smart contracts: building blocks for digital markets. EXTROPY: J. Transhumanist Thought (16), 18(2) (1996)

    Google Scholar 

  30. Tschannen-Moran, M.: Collaboration and the need for trust. J. Educ. Adm. 39(4), 308–331 (2001)

    Article  Google Scholar 

  31. Wang, S., Wan, J., Zhang, D., Li, D., Zhang, C.: Towards smart factory for industry 4.0: a self-organized multi-agent system with big data based feedback and coordination. Comput. Netw. 101, 158–168 (2016)

    Article  Google Scholar 

  32. Wüst, K., Gervais, A.: Do you need a blockchain? In: 2018 Crypto Valley Conference on Blockchain Technology (CVCBT), pp. 45–54 (2018)

    Google Scholar 

  33. Zhang, F., Liu, M., Shen, W.: Operation modes of smart factory for high-end equipment manufacturing in the Internet and Big Data era. In: 2017 IEEE International Conference on Systems, Man, and Cybernetics (SMC), Banff, AB, pp. 152–157. IEEE, October 2017

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ricardo Barbosa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Barbosa, R., Santos, R., Novais, P. (2022). Addressing Consumer Demands: A Manufacturing Collaboration Process Using Blockchain for Knowledge Representation. In: Arai, K. (eds) Intelligent Systems and Applications. IntelliSys 2021. Lecture Notes in Networks and Systems, vol 294. Springer, Cham. https://doi.org/10.1007/978-3-030-82193-7_25

Download citation

Publish with us

Policies and ethics