Skip to main content

Learning Incorrect Verdict Patterns of the Established Face Recognizing CNN Models Using Meta-Learning Supervisor ANN

  • Conference paper
  • First Online:
Intelligent Systems and Applications (IntelliSys 2021)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 295))

Included in the following conference series:

Abstract

We explore the performance of the established state-of-the-art Convolutional Neural Network (CNN) models on the novel face recognition data set with artistic facial makeup and occlusions. The strength and weaknesses of different CNN architectures are probed on particular types of makeup and occlusions of the benchmark data. Apart from the practical value of the knowing effectiveness of the face camouflaging techniques, such a data set magnifies the reliability and robustness problem of the established CNN models in real-life settings. A flexible and lightweight approach of isolating uncertainty of the CNN models verdicts’ trustworthiness is investigated, aiming to increase the trusted recognition accuracy. A separate supervising Artificial Neural Network (ANN) is attached to the established CNNs and is trained to learn patterns of the erroneous classifications of the underlying CNN models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Set, Face Matching Data., \(\vert \) Biometric Data \(\vert \) CyberExtruder, December 2019

    Google Scholar 

  2. Agarap, A.F.: Deep learning using rectified linear units (relu) (2018)

    Google Scholar 

  3. Akter, M., Jakaite, L.: Extraction of texture features from x-ray images: case of osteoarthritis detection. In: Yang, X.S., Sherratt, S., Dey, N., Joshi, A. (eds.) Third International Congress on Information and Communication Technology, pp. 143–150. Springer (2019)

    Google Scholar 

  4. Amodei, D., Olah, C., Steinhardt, J., Schulman, J., Mané, D.: Concrete problems in AI safety, Paul Christiano (2016)

    Google Scholar 

  5. Andrychowicz, M.: Learning to learn by gradient descent by gradient descent (2016)

    Google Scholar 

  6. Bergstra, J., Bardenet, R., Bengio, Y., Kégl, B.: Algorithms for hyper-parameter optimization. In: Shawe-Taylor, J., Zemel, R., Bartlett, P., Pereira, F., Weinberger, K.Q., (eds.), Advances in Neural Information Processing Systems, volume 24. Curran Associates Inc. (2011)

    Google Scholar 

  7. Chen, C., Dantcheva, A., Swearingen, T., Ross, A.: Spoofing faces using makeup: an investigative study. In: 2017 IEEE International Conference on Identity, Security and Behavior Analysis, pp. 1–8, Feburary 2017

    Google Scholar 

  8. Chen, C., Dantcheva, A., Ross, A.: Automatic facial makeup detection with application in face recognition. In: 2013 International Conference on Biometrics (ICB), pp. 1–8 (2013)

    Google Scholar 

  9. Colombo, A., Cusano, C., Schettini, R.: UMB-DB: a database of partially occluded 3d faces. In: 2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops), pp. 2113–2119, November 2011

    Google Scholar 

  10. Eckert, M., Kose, N., Dugelay, J.: Facial cosmetics database and impact analysis on automatic face recognition. In: 2013 IEEE 15th International Workshop on Multimedia Signal Processing (MMSP), pp. 434–439, September 2013

    Google Scholar 

  11. Feng ,R., Prabhakaran, B.: Facilitating fashion camouflage art. In: Proceedings of the 21st ACM International Conference on Multimedia, MM 2013, pages 793–802, New York, NY, USA. ACM (2013)

    Google Scholar 

  12. Finn, C., Abbeel, P., Levine, S.: Model-agnostic meta-learning for fast adaptation of deep networks (2017)

    Google Scholar 

  13. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge (2016)

    Google Scholar 

  14. Huang, G.B., Mattar, M., Berg, T., Learned-Miller, E., Ferencz, A., Jurie, F.: Labeled faces in the wild: a database for studying face recognition in unconstrained environments. In: ’Real-Life’ Images: Detection, Alignment, and Recognition, Marseille, France (2008)

    Google Scholar 

  15. Izenman, A.J.: Modern Multivariate Statistical Techniques: Regression, Classification, and Manifold Learning. Springer Publishing Company, Incorporated (2008)

    Google Scholar 

  16. Jakaite, L., Schetinin, V., Hladuvka, J., Minaev, S., Ambia, A., Krzanowski, W.: Deep learning for early detection of pathological changes in x-ray bone microstructures: case of osteoarthritis. Sci. Rep. 11 (2021)

    Google Scholar 

  17. Jakaite, L., Schetinin, V., Maple, C.: Bayesian assessment of newborn brain maturity from two-channel sleep electroencephalograms. Comput. Math. Meth. Med. 1–7 (2012)

    Google Scholar 

  18. Jakaite, L., Schetinin, V., Maple, C., Schult, J.: Bayesian decision trees for EEG assessment of newborn brain maturity. In: The 10th Annual Workshop on Computational Intelligence (2010)

    Google Scholar 

  19. Jakaite, L., Schetinin, V., Schult, J.: Feature extraction from electroencephalograms for Bayesian assessment of newborn brain maturity. In: 24th International Symposium on Computer-Based Medical Systems (CBMS), pp. 1–6, Bristol (2011)

    Google Scholar 

  20. Jia, S., Li, X., Hu, C., Guo, G., Xu, Z.: 3D face anti-spoofing with factorized bilinear coding (2020)

    Google Scholar 

  21. Khodabakhsh, A., Busch, C.: A generalizable deepfake detector based on neural conditional distribution modelling. In: 2020 International Conference of the Biometrics Special Interest Group (BIOSIG), pp. 1–5 (2020)

    Google Scholar 

  22. Kurd, Z., Kelly, T.: Establishing safety criteria for artificial neural networks. In: Palade, V., Howlett, R.J., Jain, L. (eds.) Knowledge-Based Intelligent Information and Engineering Systems, vol. 2773. Springer, Berlin, Heidelberg (2003)

    Chapter  Google Scholar 

  23. Kushwaha, V., Singh, M., Singh, R., Vatsa, M., Ratha, N., Chellappa, R.: Disguised faces in the wild. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 1–18 (2018)

    Google Scholar 

  24. Lake, B.M., Ullman, T.D., Tenenbaum, J.D., Gershman, S.J.: Building machines that learn and think like people (2016)

    Google Scholar 

  25. Lecun, Y., Bengio, Y.: Convolutional networks for images, speech, and time-series. In: The Handbook of Brain Theory and Neural Networks, MIT Press (1995)

    Google Scholar 

  26. Liu, X., Wang, X., Matwin, S.: Interpretable deep convolutional neural networks via meta-learning. In: 2018 International Joint Conference on Neural Networks (IJCNN), pp. 1–9 (2018)

    Google Scholar 

  27. Mansourifar, H., Shi, W.: One-shot gan generated fake face detection (2020)

    Google Scholar 

  28. Martinez, A., Benavente, R.: The AR face database. Technical Report 24, Computer Vision Center, Bellatera, June 1998

    Google Scholar 

  29. Min, R., Hadid, A., Dugelay, J.-L.: Improving the recognition of faces occluded by facial accessories. In: FG 2011, 9th IEEE Conference on Automatic Face and Gesture Recognition, 21–25 March 2011, Santa Barbara, CA, USA (2011)

    Google Scholar 

  30. Nichol, A., Achiam, J., Schulman, J.: On first-order meta-learning algorithms (2018)

    Google Scholar 

  31. Nyah, N., Jakaite, L., Schetinin, V., Sant, P., Aggoun, A.: Evolving polynomial neural networks for detecting abnormal patterns. In: 2016 IEEE 8th International Conference on Intelligent Systems, pp. 74–80 (2016)

    Google Scholar 

  32. Nyah, N., Jakaite, L., Schetinin, V., Sant, P., Aggoun, A.: Learning polynomial neural networks of a near-optimal connectivity for detecting abnormal patterns in biometric data. In: 2016 SAI Computing Conference, pp. 409–413 (2016)

    Google Scholar 

  33. Ram, R., Müller, S., Pfreundt, F.-J., Gauger, N.R., Keuper, J.: Scalable hyperparameter optimization with lazy Gaussian processes (2020)

    Google Scholar 

  34. Santoro, A.B., Sergey, B., Matthew, W., Daan, L.T.: Meta-learning with memory-augmented neural networks. In: Balcan, M.F., Weinberger, K.Q., (eds.), Proceedings of The 33rd International Conference on Machine Learning, volume 48 of Proceedings of Machine Learning Research, PMLRpp. 1842–1850, New York, New York, USA, 20–22 June 2016

    Google Scholar 

  35. Schetinin, V., Jakaite, L., Krzanowski, W.: Bayesian averaging over decision tree models: an application for estimating uncertainty in trauma severity scoring. Int. J. Med. Inform. 112, 6–14 (2018)

    Article  Google Scholar 

  36. Schetinin, V., Jakaite, L., Krzanowski, W.: Bayesian averaging over decision tree models for trauma severity scoring. Artif. Intell. Med. 84, 139–145 (2018)

    Article  Google Scholar 

  37. Schetinin, V., Jakaite, L., Krzanowski, W.: Bayesian learning of models for estimating uncertainty in alert systems: application to air traffic conflict avoidance. Integr. Comput.-Aid. Eng. 26, 1–17 (2018)

    Article  Google Scholar 

  38. Schetinin, V., Jakaite, L., Schult, J.: Informativeness of sleep cycle features in Bayesian assessment of newborn electroencephalographic maturation. In: 24th International Symposium on Computer-Based Medical Systems, pp. 1–6 (2011)

    Google Scholar 

  39. Selitskaya, N., Sielicki, S., Christou, N.: Challenges in face recognition using machine learning algorithms: case of makeup and occlusions. In: Arai, K., Kapoor, S., Bhatia, R., (eds) Intelligent Systems and Applications. IntelliSys 2020. Advances in Intelligent Systems and Computing. Springer (2020)

    Google Scholar 

  40. Christou, N., Selitskaya, N., Sielicki, S.: Challenges in real-life face recognition with heavy makeup and occlusions using deep learning algorithms. In: Nicosia, G., et al., (Eds.) Machine Learning, Optimization, and Data Science 6th International Conference, LOD 2020, Siena, Italy, 19–23 July 2020, Revised Selected Papers, Part II, volume 12566. Springer International Publishing (2020)

    Google Scholar 

  41. Selitskiy, S.: Code for paper ‘Learning Incorrect Verdict Patterns of the Established Face Recognising CNN Models using Meta-learning Supervisor ANN’, January 2021

    Google Scholar 

  42. Selitskiy, S., Selitskaya, N., Marina, K.: BookClub artistic makeup and occlusions face data. Mendeley Data, 2 September 2020

    Google Scholar 

  43. Pratt, L., Thrun, S.: Learning To Learn. Springer, Boston, MA (1998)

    MATH  Google Scholar 

  44. Vanschoren, J.: Meta-learning: A survey (2018)

    Google Scholar 

  45. Willers, O., Sudholt, S., Raafatnia, S., Abrecht, S.: Safety concerns and mitigation approaches regarding the use of deep learning in safety-critical perception tasks (2020)

    Google Scholar 

  46. Zhao, T., Xu, X., Xu, M., Ding, H., Xiong, Y., Xia, W.: Learning to recognize patch-wise consistency for deepfake detection (2020)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Selitskiy, S., Christou, N., Selitskaya, N. (2022). Learning Incorrect Verdict Patterns of the Established Face Recognizing CNN Models Using Meta-Learning Supervisor ANN. In: Arai, K. (eds) Intelligent Systems and Applications. IntelliSys 2021. Lecture Notes in Networks and Systems, vol 295. Springer, Cham. https://doi.org/10.1007/978-3-030-82196-8_22

Download citation

Publish with us

Policies and ethics