Skip to main content

Adversarial Domain Adaptation for Medieval Instrument Recognition

  • Conference paper
  • First Online:
Intelligent Systems and Applications (IntelliSys 2021)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 295))

Included in the following conference series:

Abstract

Image classification models have improved drastically due to neural networks. But as a direct consequence of being trained on a specific dataset, neural networks tend to be biased towards theirs training data and provide worse results on other domains. Hence, a new sub field of Transfer Learning emerged namely Domain Adaptation which uses in the most case a combination of adversarial methods and mathematical heuristics which are applied to the model’s latent space. In this paper we present a new method for Unsupervised Domain Adaptation that is both fast and resilient. Our method starts by applying style transformations to the input images and train a transformation discriminator module to predict these style changes. Whereas the feature extractor part of our model is trained on the adversarial part of that loss allowing to forget and not extract style information which in return improves the accuracy of the classifier. Our second contribution is our new dataset of Musical Instruments Recognition In Medieval Artworks which provides a better benchmark for transfer learning and domain adaptation methods and pushes the research in this area further. We evaluated our method on two main benchmarks namely MNIST-USPS-SVHN and MIMI-Musiconis-Vihuelas benchmark and in all cases our method provides state of the art performances.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://mimo-international.com/MIMO/.

  2. 2.

    http://musiconis.huma-num.fr/fr/.

  3. 3.

    https://vihuelagriffiths.com/.

  4. 4.

    http://www.plm.paris-sorbonne.fr/musicastallis/.

  5. 5.

    http://www.gothicivories.courtauld.ac.uk.

  6. 6.

    http://base-romane.fr/accueil2.aspx.

  7. 7.

    http://initiale.irht.cnrs.fr.

References

  1. Batanina, E., Bekkouch, I.E.I., Youssry, Y., Khan, A., Khattak, A.M., Bortnikov, M.: Domain adaptation for car accident detection in videos. In: 2019 Ninth International Conference on Image Processing Theory, Tools and Applications (IPTA), pp. 1–6 (2019)

    Google Scholar 

  2. Bekkouch, I.E.I., Nicolae, D.C., Khan, A., Kazmi, S.M.A., Khattak, A.M., Ibragimov, B.: Adversarial reconstruction loss for domain generalization. IEEE Access 9, 42424–42437 (2021)

    Article  Google Scholar 

  3. Bekkouch, I.E.I., Aidinovich, T., Vrtovec, T., Kuleev, R., Ibragimov, B.: Multi-agent shape models for hip landmark detection in MR scans. In: Išgum, I., Landman, B.A. (eds.) Medical Imaging 2021: Image Processing. volume 11596, pp. 153–162. International Society for Optics and Photonics, SPIE (2021)

    Google Scholar 

  4. Bekkouch, I.E.I., Youssry, Y., Gafarov, R., Khan, A., Khattak, A.M.: Triplet loss network for unsupervised domain adaptation. Algorithms 12(5), 96 (2019)

    Article  Google Scholar 

  5. Busto, P.P., Gall, J.: Open set domain adaptation. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 754–763 (October 2017)

    Google Scholar 

  6. Cai, G., Wang, Y., Zhou, M., He, L.: Unsupervised domain adaptation with adversarial residual transform networks. CoRR abs/1804.09578 (2018)

    Google Scholar 

  7. Carlucci, F.M., D’Innocente, A., Bucci, S., Caputo, B., Tommasi, T.: Domain generalization by solving jigsaw puzzles. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2229–2238 (2019)

    Google Scholar 

  8. Cheng, V., Li, C.H.: Personalized spam filtering with semi-supervised classifier ensemble. In: 2006 IEEE/WIC/ACM International Conference on Web Intelligence (WI 2006 Main Conference Proceedings) (WI 2006), pp. 195–201. IEEE (2006)

    Google Scholar 

  9. Deshmukh, A.A., Bansal, A., Rastogi, A.: Domain2vec: deep domain generalization. CoRR abs/1807.02919 (2018)

    Google Scholar 

  10. Griffiths, J.: At court and at home with the vihuela de mano: Current perspectives on the instrument, its music, and its world. J. Lute Soc. Am. 22, 1–27 (1989)

    Google Scholar 

  11. Hoffman, J., et al.: Cycada: cycle-consistent adversarial domain adaptation. In ICML (2018)

    Google Scholar 

  12. Hu, L., Kan, M., Shan, S., Chen, X.: Duplex generative adversarial network for unsupervised domain adaptation. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (June 2018)

    Google Scholar 

  13. Ibrahim, B.I., Nicolae, D.C., Khan, A., Ali, S.I., Khattak, A.: VAE-GAN based zero-shot outlier detection. In: Proceedings of the 2020 4th International Symposium on Computer Science and Intelligent Control, ISCSIC 2020, New York, NY, USA. Association for Computing Machinery (2020)

    Google Scholar 

  14. Motiian, S., Piccirilli, M., Adjeroh, D.A., Doretto, G.: Unified deep supervised domain adaptation and generalization. CoRR abs/1709.10190 (2017)

    Google Scholar 

  15. Pan, S.J., Yang, Q.: A survey on transfer learning. IEEE Trans. Knowl. Data Eng. 22(10), 1345–1359 (2010)

    Article  Google Scholar 

  16. Rivera, A.R., Khan, A., Bekkouch, I.E.I., Sheikh, T.S.: Anomaly detection based on zero-shot outlier synthesis and hierarchical feature distillation. IEEE Trans. Neural Netw. Learn. Syst. 1–11 (2020)

    Google Scholar 

  17. Saito, K., Yamamoto, S., Ushiku, Y., Harada, T.: Open set domain adaptation by backpropagation. CoRR abs/1804.10427 (2018)

    Google Scholar 

  18. Sener, O., Song, H.O., Saxena, A., Savarese, S.: Learning transferrable representations for unsupervised domain adaptation. In: Lee, D.D., Sugiyama, M., Luxburg, U.V., Guyon, I., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 29, pp. 2110–2118. Curran Associates, Inc. (2016)

    Google Scholar 

  19. Szegedy, C., Ioffe, S., Vanhoucke, V., Alemi, A.: Inception-v4, inception-resnet and the impact of residual connections on learning. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 31 (2017)

    Google Scholar 

  20. Yakovlev, K., Bekkouch, I.E.I., Khan, A.M., Khattak, A.M.: Abstraction-based outlier detection for image data. In: Arai, K., Kapoor, S., Bhatia, R. (eds.) Intelligent Systems and Applications, pp. 540–552. Springer, Cham (2021)

    Google Scholar 

  21. Yao, T., Pan, Y., Ngo, C., Li, H., Mei, T.: Semi-supervised domain adaptation with subspace learning for visual recognition. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2142–2150 (June 2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Imad Eddine Ibrahim Bekkouch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bekkouch, I.E.I., Constantin, N.D., Eyharabide, V., Billiet, F. (2022). Adversarial Domain Adaptation for Medieval Instrument Recognition. In: Arai, K. (eds) Intelligent Systems and Applications. IntelliSys 2021. Lecture Notes in Networks and Systems, vol 295. Springer, Cham. https://doi.org/10.1007/978-3-030-82196-8_50

Download citation

Publish with us

Policies and ethics