Skip to main content

Attention-Enabled Object Detection to Improve One-Stage Tracker

  • Conference paper
  • First Online:
Intelligent Systems and Applications (IntelliSys 2021)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 295))

Included in the following conference series:

  • 1177 Accesses

Abstract

State-of-the-art (SoTA) detection-based tracking methods mostly accomplish the detection and the identification feature learning tasks separately. Only a few efforts include the joint learning of detection and identification features. This work proposes two novel one-stage trackers by introducing implicit and explicit attention to the tracking research topic. For our tracking system based on implicit attention, we further introduce a novel fusion of feature maps combining information from different abstraction levels. For our tracking system based on explicit attention, we introduce utilization of an additional auxiliary function. These systems outperform the SoTA tracking systems in terms of MOTP (Multi-Object Tracking Precision) and IDF1 score when evaluated on public benchmark datasets including MOT15, MOT16, and MOT17. High MOTP score indicates precise detection of bounding boxes of objects, while high IDF1 score indicates accurate ID detections, which is very crucial for surveillance and security systems. Therefore, proposed systems are good choice for event-detections in surveillance feeds as we are capable of detecting correct ID and precise location.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bera, A., Kim, S., Manocha, D.: Realtime anomaly detection using trajectory-level crowd behavior learning. In: CVPRW, pp. 1289–1296 (2016)

    Google Scholar 

  2. Bergmann, P., Meinhardt, T., Leal-Taixe, L.: Tracking without bells and whistles. In: ICCV (2019)

    Google Scholar 

  3. Bernardin, K., Stiefelhagen, R.: Evaluating multiple object tracking performance: the CLEAR MOT metrics. EURASIP J. Image Video Process. 1–10, 2008 (2008)

    Google Scholar 

  4. Bertinetto, L., Valmadre, J., Henriques, F., Vedaldi, A., Philip Torr, H.S.: Fully-convolutional siamese networks for object tracking. In: ECCV Workshops (2016)

    Google Scholar 

  5. Chu, P., Ling, H.: FamNET: joint learning of feature, affinity and multi-dimensional assignment for online multiple object tracking. In: ICCV, pp. 6171–6180 (2019)

    Google Scholar 

  6. Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: CVPR (2009)

    Google Scholar 

  7. Dollár, P., Wojek, C., Schiele, B., Perona, P.: Pedestrian detection: a benchmark. In: CVPR (2009)

    Google Scholar 

  8. Ess, A., Leibe, B., Schindler, K., van Gool, L.: A mobile vision system for robust multi-person tracking. In: CVPR. IEEE Press (2008)

    Google Scholar 

  9. Fitts, J.M.: Precision correlation tracking via optimal weighting functions. In: 1979 18th IEEE Conference on Decision and Control including the Symposium on Adaptive Processes, vol. 2, pp. 280–283 (1979)

    Google Scholar 

  10. Fu, J., et al.: Dual attention network for scene segmentation. In: CVPR (2019)

    Google Scholar 

  11. Fukunaga, K., Hostetler, L.: The estimation of the gradient of a density function, with applications in pattern recognition. IEEE Trans. Inf. Theory 21(1), 32–40 (1975)

    Article  MathSciNet  Google Scholar 

  12. Gao, J., Zhang, T., Xu, C.: Graph convolutional tracking. In: CVPR, pp. 4644–4654 (2019)

    Google Scholar 

  13. Graves, A.: Generating sequences with recurrent neural networks. CoRR, abs/1308.0850 (2013)

    Google Scholar 

  14. Graves, A., Wayne, G., Danihelka, I.: Neural Turing machines. CoRR, abs/1410.5401 (2014)

    Google Scholar 

  15. Guo, H., Zheng, K., Fan, X., Yu, H., Wang, S.: Visual attention consistency under image transforms for multi-label image classification. In: CVPR (2019)

    Google Scholar 

  16. He, C., Hu, H.: Image captioning with visual-semantic double attention. ACM Trans. Multimedia Comput. Commun. Appl. 15(1), 1–16 (2019)

    Article  MathSciNet  Google Scholar 

  17. Hoffmann, G.M., Tomlin, C.J., Montemerlo, M., Thrun, S.: Autonomous automobile trajectory tracking for off-road driving: controller design, experimental validation and racing. In: American Control Conference, pp. 2296–2301 (2007)

    Google Scholar 

  18. Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: CVPR (2018)

    Google Scholar 

  19. Huang, G., Liu, Z., van der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: CVPR, pp. 2261–2269 (2017)

    Google Scholar 

  20. Huang, Y., Liao, I., Chen, C., İk, T., Peng, W.: TrackNet: a deep learning network for tracking high-speed and tiny objects in sports applications*. In 16th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS), pp. 1–8 (2019)

    Google Scholar 

  21. Huang, Z., Liang, S., Liang, M., Yang, H.: DiaNet: dense-and-implicit attention network. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, no. 04, pp. 4206–4214 (2020)

    Google Scholar 

  22. Jadhav, A., Mukherjee, P., Kaushik, V., Lall, B.: Aerial multi-object tracking by detection using deep association networks. In: 2020 National Conference on Communications (NCC), pp. 1–6 (2020)

    Google Scholar 

  23. Jetley, A., Lord, N.A., Lee, N., Torr, P.: Learn to pay attention. In: International Conference on Learning Representations (2018)

    Google Scholar 

  24. Jin, S., Liu, W., Ouyang, W., Qian, C.: Multi-person articulated tracking with spatial and temporal embeddings. In: CVPR (2019)

    Google Scholar 

  25. Kang, K., et al.: Object detection in videos with tubelet proposal networks. In: CVPR (2017)

    Google Scholar 

  26. Kendall, A., Gal, Y., Cipolla, R.: Multi-task learning using uncertainty to weigh losses for scene geometry and semantics. In: CVPR (2018)

    Google Scholar 

  27. Kuhn, H.W., Yaw, B.: The Hungarian method for the assignment problem. Naval Res. Logist. Quart. 2, 83–97 (1955)

    Article  MathSciNet  Google Scholar 

  28. Li, K., Wu, Z., Peng, K.-C., Ernst, J., Fu, Y.: Tell me where to look: guided attention inference network. In: CVPR, pp. 9215–9223 (2018)

    Google Scholar 

  29. Liu, C., Mao, J., Sha, F., Alan Yuille, L.: Attention correctness in neural image captioning. In: AAAI (2017)

    Google Scholar 

  30. Liu, W., et al.: SSD: single shot multibox detector. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) Computer Vision – ECCV2020, vol. 9905, pp. 21–37. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46448-0_2

    Chapter  Google Scholar 

  31. Milan, a., Leal-Taixé, L., Reid, I., Roth, S., Schindler, K.: Mot16: a benchmark for multi-object tracking. arXiv preprint arXiv:1603.00831 (2016)

  32. Ning, G., et al.: Spatially supervised recurrent convolutional neural networks for visual object tracking. In: IEEE International Symposium on Circuits and Systems (ISCAS), pp. 1–4 (2017)

    Google Scholar 

  33. Oktay, O., et al.: Attention U-NET: learning where to look for the pancreas. ArXiv, abs/1804.03999 (2018)

    Google Scholar 

  34. Peng, J., et al.: Chained-tracker: chaining paired attentive regression results for end-to-end joint multiple-object detection and tracking. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.M. (eds.) Computer Vision. Lecture Notes in Computer Science, vol. 12349. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58548-8_9

    Chapter  Google Scholar 

  35. Redmon, J., Divvala, S.K., Girshick, R.B., Farhadi, A.: You only look once: unified, real-time object detection. CoRR, abs/1506.02640 (2015)

    Google Scholar 

  36. Ren, s., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. In: International Conference on Neural Information Processing Systems, NIPS 2015, pp. 91–99 (2015)

    Google Scholar 

  37. Ristani, E., Solera, F., Zou, R.S., Cucchiara, R., Tomasi, C.: Performance measures and a data set for multi-target, multi-camera tracking. In: ECCV Workshops, vol. 2, pp. 17–35 (2016)

    Google Scholar 

  38. Schlemper, J., et al.: Learning to leverage salient regions in medical images, Attention gated networks (2019)

    Google Scholar 

  39. Song, Y., et al.: Vital: visual tracking via adversarial learning. In: CVPR, pp. 8990–8999 (2018)

    Google Scholar 

  40. Sun, K., et al.: Bottom-up human pose estimation by ranking heatmap-guided adaptive keypoint estimates (2020)

    Google Scholar 

  41. Voigtlaender, P., et al.: Mots: multi-object tracking and segmentation. In: CVPR, pp. 7934–7943 (2019)

    Google Scholar 

  42. Wang, F., et al.: Residual attention network for image classification. In: CVPR, July 2017

    Google Scholar 

  43. Wang, J., et al.: Deep high-resolution representation learning for visual recognition. IEEE Trans. Pattern Anal. Mach. Intell. (2020)

    Google Scholar 

  44. Wang, Z., Zheng, L., Liu, Y., Wang, S.: Towards real-time multi-object tracking. In: ECCV (2020)

    Google Scholar 

  45. Welch, G., Bishop, G.: An introduction to the Kalman filter (1995)

    Google Scholar 

  46. Wojke, N., Bewley, A., Paulus, D.: Simple online and realtime tracking with a deep association metric. In: 2017 IEEE International Conference on Image Processing (ICIP), pp. 3645–3649 (2017)

    Google Scholar 

  47. Woo, S., Park, J., Lee, J.-Y., Kweon, I.S.: Convolutional block attention module. In: ECCV, Cham (2018)

    Google Scholar 

  48. Xiao, T., Li, S., Wang, B., Lin, L., Wang, X.: Joint detection and identification feature learning for person search. In: CVPR (2017)

    Google Scholar 

  49. Yu, F., Li, W., Li, Q., Liu, Y., Shi, X., Yan, J.: Poi: multiple object tracking with high performance detection and appearance feature. In: ECCV Workshops (2016)

    Google Scholar 

  50. Yu, F., Li, W., Li, Q., Liu, Y., Shi, X., Yan, J.: Poi: multiple object tracking with high performance detection and appearance feature. In: ECCV Workshops (2016)

    Google Scholar 

  51. Zhang, S., Benenson, R., Schiele, B.: A diverse dataset for pedestrian detection. In: CVPR, Citypersons (2017)

    Google Scholar 

  52. Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: A simple baseline for multi-object tracking. arXiv preprint arXiv:2004.01888 (2020)

  53. Zheng, L., Zhang, H., Sun, S., Chandraker, M., Yang, Y., Tian, Q.: Person re-identification in the wild. In: CVPR, pp. 1367–1376 (2017)

    Google Scholar 

  54. Zhou, X., Koltun, V., Krähenbühl, P.: Tracking objects as points. In: ECCV (2020)

    Google Scholar 

Download references

Acknowledgments

This work was supported by the Milestone Research Programme at Aalborg University (MRPA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neelu Madan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Madan, N., Nasrollahi, K., Moeslund, T.B. (2022). Attention-Enabled Object Detection to Improve One-Stage Tracker. In: Arai, K. (eds) Intelligent Systems and Applications. IntelliSys 2021. Lecture Notes in Networks and Systems, vol 295. Springer, Cham. https://doi.org/10.1007/978-3-030-82196-8_55

Download citation

Publish with us

Policies and ethics