Abstract
The aim of the paper is to present the role of Natural Language Processing (NLP) in the support of contemporary business organization management especially focusing on decisions making processes. The article puts emphasis on the characteristics of NLP including its evolution, key technological components, and development trends. It also presents the research on the advantages and disadvantages of applying NLP in nowadays enterprises as well as focuses on the review of selected case studies, reports and practical examples.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Accenture report: top natural language processing applications in business. Unlocking value from unstructured data (2019). https://www.accenture.com/_acnmedia/PDF-106/Accenture-Unlocking-Value-Unstructured-Data.pdf
Beysolow, T.: Applied natural language processing with python. In: Implementing Machine Learning and Deep Learning Algorithms for Natural Language Processing, pp. 4–9, Apress, San Francisco (2018)
Blumeglobal: https://www.blumeglobal.com/learning/natural-language-processing/
Deng, L., Liu, Y. (eds.): Deep Learning in Natural Language Processing, Springer Nature Singapore, p.1 (2018)
Iglesias, C.A., Moreno, A.: Sentiment Analysis for Social Media, MDPI, Basel, Switzerland, p.1 (2020)
Jelonek, D., Stępniak, C., Turek, T., Ziora, L.: Planning city development directions with the application of sentiment analysis. Prague Economic Papers 29, 274–290 (2020). https://pep.vse.cz/corproof.php?tartkey=pep-000000-0643
Jelonek, D., Stępniak, C., Ziora, L.: The meaning of big data in the support of managerial decisions in contemporary organizations: review of selected research. In: Proceedings of Future of information and Communication Conference (FiCC 2018), Singapore, pp. 195–198 (2018)
Jelonek, D., Mesjasz-Lech, A., Stępniak, C., Turek, T., Ziora, L.: Potential data sources for sentiment analysis tools for municipal management based on empirical research. In: Arai, K., Bhatia, R. (eds.) FICC 2019. LNNS, vol. 69, pp. 708–724. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-12388-8_49
Khurana, D., Koli, A., Khatter, K., Singh, S.: Natural Language Processing: State Of The Art, Current Trends and Challenges August 2017. https://arxiv.org/abs/1708.05148
Kulkarni, A., Shivananda, A.: Natural Language Processing Recipes: Unlocking Text Data with Machine Learning and Deep Learning using Python. Apress, Bangalore, Karnataka, India (2019)
Kurdi, M.Z.: Natural Language Processing and Computational Linguistics 1. Speech, Morphology, Syntax, Wiley (2016)
LaPlante, A., Coleman, T.F.: Teaching computers to understand human language: how natural language processing is reshaping the world of finance (2017). https://globalriskinstitute.org/publications/natural-language-processing-reshaping-world-finance/
Liu, B.: Sentiment analysis. Second edition. Mining Opinions, Sentiments, and Emotions, p. 6. Cambridge University Press, New York (2020)
Marutitech: Top 12 use cases of Natural Language Processing in Healthcare. https://marutitech.com/use-cases-of-natural-language-processing-in-healthcare/
Pathak, A.R., Agarwal, B., Pandey, M., Rautaray, S. (eds.): Deep Learning-Based Approaches for Sentiment Analysis. Springer Nature Singapore (2020)
Pimm, Ch., Raynal, C., Tulechki, N., Hermann, E., Caudy, G., et al.: Natural Language Processing (NLP) tools for the analysis of incident and accident reports. In: International Conference on Human-Computer Interaction in Aerospace (HCI-Aero), Brussels, Belgium. (2012). <halshs-00953658>. https://www.researchgate.net/publication/280751863_Natural_Language_Processing_NLP_tools_for_the_analysis_of_incident_and_accident_reports
Stępniak, C., Turek, T., Ziora, L.: The role of corporate ontology in IT support in processes management. In: Bi, Y., Bhatia, R., Kapoor, S. (eds.) Intelligent Systems and Applications 2019, pp. 1285–1297. Intellisys, Springer, Cham (2020)
Raj, S.: Building Chatbots with Python. Using Natural Language Processing and Machine Learning, pp. 5–7. Apress, Bangalore (2019)
Russel, S.: Human compatible artificial intelligence and the problem of control, p.91. Viking (2019)
Zięba, B.: Natural language processing: empathiq.io Case Study (2018). https://inovatica.com/blog/natural-language-processing-empathiq-cs/
Ziora, L.: Machine learning solutions in the management of a contemporary business organisation. J. Decis. Syst. Taylor Francis (2020). https://doi.org/10.1080/12460125.2020.1848378
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Ziora, L. (2022). Natural Language Processing in the Support of Business Organization Management. In: Arai, K. (eds) Intelligent Systems and Applications. IntelliSys 2021. Lecture Notes in Networks and Systems, vol 296. Springer, Cham. https://doi.org/10.1007/978-3-030-82199-9_6
Download citation
DOI: https://doi.org/10.1007/978-3-030-82199-9_6
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-82198-2
Online ISBN: 978-3-030-82199-9
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)