Abstract
Although the multi-agent pickup and delivery (MAPD) problem, wherein multiple agents iteratively carry materials from some storage areas to the respective destinations without colliding, has received considerable attention, conventional MAPD algorithms use simplified, uniform models without considering constraints, by assuming specially designed environments. Thus, such conventional algorithms are not applicable to some realistic applications wherein agents have to move in a more complicated and restricted environment; for example, in a rescue or a construction site, their paths and orientations are strictly restricted owing to the path width, and the sizes of agents and materials they carry. Therefore, we first formulate an N-MAPD problem, which is an extension of the MAPD problem for a non-uniform environment. We then propose an N-MAPD algorithm, the path and action planning with orientation (PAPO), to effectively generate collision-free paths meeting the environmental constraints. The PAPO is an algorithm that considers not only the direction of movement but also the orientation of agents as well as the cost and timing of rotations in our N-MAPD formulation by considering the agent and material sizes, node sizes, and path widths. We experimentally evaluated the performance of the PAPO using our simulated environments and demonstrated that it could efficiently generate not optimal but acceptable paths for non-uniform environments.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Alonso-Mora, J., Beardsley, P., Siegwart, R.: Cooperative collision avoidance for nonholonomic robots. IEEE Trans. Rob. 34(2), 404–420 (2018). https://doi.org/10.1109/TRO.2018.2793890
Bareiss, D., van den Berg, J.: Generalized reciprocal collision avoidance. Int. J. Robot. Res. 34(12), 1501–1514 (2015). https://doi.org/10.1177/0278364915576234
Barták, R., Švancara, J., Škopková, V., Nohejl, D., Krasičenko, I.: Multi-agent path finding on real robots. AI Commun. 32(3), 175–189 (2019). https://doi.org/10.3233/AIC-190621
Bellusci, M., Basilico, N., Amigoni, F.: Multi-agent path finding in configurable environments. In: Proceedings of the 19th International Conference on Autonomous Agents and MultiAgent Systems, pp. 159–167 (2020)
Boyarski, E., et al.: ICBS: improved conflict-based search algorithm for multi-agent pathfinding. In: Twenty-Fourth International Joint Conference on Artificial Intelligence (2015)
Boyrasky, E., Felner, A., Sharon, G., Stern, R.: Don’t split, try to work it out: bypassing conflicts in multi-agent pathfinding. In: Twenty-Fifth International Conference on Automated Planning and Scheduling (2015)
Felner, A., et al.: Search-based optimal solvers for the multi-agent pathfinding problem: summary and challenges. In: Tenth Annual Symposium on Combinatorial Search (2017)
Ho, F., Salta, A., Geraldes, R., Goncalves, A., Cavazza, M., Prendinger, H.: Multi-agent path finding for UAV traffic management. In: Proceedings of the 18th International Conference on Autonomous Agents and MultiAgent Systems, pp. 131–139. International Foundation for Autonomous Agents and Multiagent Systems (2019)
Hönig, W., et al.: Multi-agent path finding with kinematic constraints. In: Twenty-Sixth International Conference on Automated Planning and Scheduling (2016)
Kou, N.M., et al.: Multi-agent path planning with non-constant velocity motion. In: Proceedings of the 18th International Conference on Autonomous Agents and MultiAgent Systems, pp. 2069–2071. International Foundation for Autonomous Agents and Multiagent Systems (2019)
Krakowczyk, D., Wolff, J., Ciobanu, A., Meyer, D.J., Hrabia, C.-E.: Developing a distributed drone delivery system with a hybrid behavior planning system. In: Trollmann, F., Turhan, A.-Y. (eds.) KI 2018. LNCS (LNAI), vol. 11117, pp. 107–114. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00111-7_10
Li, J., Ran, M., Xie, L.: Efficient trajectory planning for multiple non-holonomic mobile robots via prioritized trajectory optimization. IEEE Robot. Autom. Lett. 6(2), 405–412 (2021). https://doi.org/10.1109/LRA.2020.3044834
Li, J., Surynek, P., Felner, A., Ma, H., Kumar, T.K.S., Koenig, S.: Multi-agent path finding for large agents. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, no. 01, pp. 7627–7634 (2019). https://doi.org/10.1609/aaai.v33i01.33017627
Li, M., et al.: Efficient ridesharing order dispatching with mean field multi-agent reinforcement learning. In: The World Wide Web Conference, pp. 983–994. ACM (2019). https://doi.org/10.1145/3308558.3313433
Liu, M., Ma, H., Li, J., Koenig, S.: Task and path planning for multi-agent pickup and delivery. In: Proceedings of the 18th International Conference on Autonomous Agents and MultiAgent Systems, pp. 1152–1160. International Foundation for Autonomous Agents and Multiagent Systems (2019)
Ma, H., Hönig, W., Kumar, T.S., Ayanian, N., Koenig, S.: Lifelong path planning with kinematic constraints for multi-agent pickup and delivery. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 7651–7658 (2019). https://doi.org/10.1609/aaai.v33i01.33017651
Ma, H., et al.: Overview: generalizations of multi-agent path finding to real-world scenarios. arXiv preprint arXiv:1702.05515 (2017)
Ma, H., Li, J., Kumar, T., Koenig, S.: Lifelong multi-agent path finding for online pickup and delivery tasks. In: Proceedings of the 16th Conference on Autonomous Agents and MultiAgent Systems, pp. 837–845. International Foundation for Autonomous Agents and Multiagent Systems (2017)
Ma, H., Tovey, C., Sharon, G., Kumar, T.S., Koenig, S.: Multi-agent path finding with payload transfers and the package-exchange robot-routing problem. In: Thirtieth AAAI Conference on Artificial Intelligence (2016)
Machida, M.: Polynomial-time multi-agent pathfinding with heterogeneous and self-interested agents. In: Proceedings of the 18th International Conference on Autonomous Agents and MultiAgent Systems, pp. 2105–2107. International Foundation for Autonomous Agents and Multiagent Systems (2019)
Morris, R., et al.: Planning, scheduling and monitoring for airport surface operations. In: Workshops at the Thirtieth AAAI Conference on Artificial Intelligence (2016)
Okumura, K., Machida, M., Défago, X., Tamura, Y.: Priority inheritance with backtracking for iterative multi-agent path finding. In: Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence, IJCAI 2019, pp. 535–542. International Joint Conferences on Artificial Intelligence Organization, July 2019. https://doi.org/10.24963/ijcai.2019/76
Salzman, O., Stern, R.: Research challenges and opportunities in multi-agent path finding and multi-agent pickup and delivery problems. In: Proceedings of the 19th International Conference on Autonomous Agents and MultiAgent Systems, pp. 1711–1715 (2020)
Sharon, G., Stern, R., Felner, A., Sturtevant, N.R.: Conflict-based search for optimal multi-agent pathfinding. Artif. Intell. 219, 40–66 (2015). https://doi.org/10.1016/j.artint.2014.11.006
Silver, D.: Cooperative pathfinding. In: Proceedings of the First AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment, AIIDE 2005, pp. 117–122. AAAI Press (2005)
Surynek, P.: On satisfisfiability modulo theories in continuous multi-agent path finding: compilation-based and search-based approaches compared. In: Proceedings of the 12th International Conference on Agents and Artificial Intelligence, ICAART, vol. 2, pp. 182–193. INSTICC, SciTePress (2020). https://doi.org/10.5220/0008980101820193
Tang, S., Kumar, V.: Safe and complete trajectory generation for robot teams with higher-order dynamics. In: 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 1894–1901 (2016). https://doi.org/10.1109/IROS.2016.7759300
Veloso, M., Biswas, J., Coltin, B., Rosenthal, S.: CoBots: robust symbiotic autonomous mobile service robots. In: Proceedings of the 24th International Conference on Artificial Intelligence, IJCAI 2015, pp. 4423–4429. AAAI Press (2015)
Wang, H., Rubenstein, M.: Walk, stop, count, and swap: decentralized multi-agent path finding with theoretical guarantees. IEEE Robot. Autom. Lett. 5(2), 1119–1126 (2020). https://doi.org/10.1109/LRA.2020.2967317
Wang, K.H.C., Botea, A.: MAPP: a scalable multi-agent path planning algorithm with tractability and completeness guarantees. J. Artif. Intell. Res. 42, 55–90 (2011)
Wurman, P.R., D’Andrea, R., Mountz, M.: Coordinating hundreds of cooperative, autonomous vehicles in warehouses. AI Mag. 29(1), 9 (2008). https://doi.org/10.1609/aimag.v29i1.2082
Yakovlev, K., Andreychuk, A., Rybecký, T., Kulich, M.: On the application of safe-interval path planning to a variant of the pickup and delivery problem. In: Proceedings of the 17th International Conference on Informatics in Control, Automation and Robotics, ICINCO, vol. 1, pp. 521–528. INSTICC, SciTePress (2020). https://doi.org/10.5220/0009888905210528
Yen, J.Y.: Finding the k shortest loopless paths in a network. Manag. Sci. 17(11), 712–716 (1971). https://doi.org/10.1287/mnsc.17.11.712
Zhang, H., Li, J., Surynek, P., Koenig, S., Kumar, T.S.: Multi-agent path finding with mutex propagation. In: Proceedings of the International Conference on Automated Planning and Scheduling, vol. 30, pp. 323–332 (2020)
Acknowledgement
This work was partly supported by JSPS KAKENHI Grant Numbers 17KT0044 and 20H04245.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Yamauchi, T., Miyashita, Y., Sugawara, T. (2021). Path and Action Planning in Non-uniform Environments for Multi-agent Pickup and Delivery Tasks. In: Rosenfeld, A., Talmon, N. (eds) Multi-Agent Systems. EUMAS 2021. Lecture Notes in Computer Science(), vol 12802. Springer, Cham. https://doi.org/10.1007/978-3-030-82254-5_3
Download citation
DOI: https://doi.org/10.1007/978-3-030-82254-5_3
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-82253-8
Online ISBN: 978-3-030-82254-5
eBook Packages: Computer ScienceComputer Science (R0)