Skip to main content

Key Techniques and Challenges for Processing of Heart Sound Signals

  • Conference paper
  • First Online:
Applied Intelligence and Informatics (AII 2021)

Abstract

Recently, new advances and emerging technologies in healthcare and medicine have been growing rapidly, allowing for automatic disease diagnosis. Healthcare technology advances entail monitoring devices and processing signals. Advanced signal processing and analytical techniques were effectively implemented in numerous research domains. Thus, adopting such methods for biomedical signal processing is an essential study field. The signal processing techniques are explicitly applied to heart sound (called phonocardiogram or PCG) signals as part of biomedical signals for heart health monitoring in this paper. The automatic detection of life-threatening cardiac arrhythmias has been a subject of interest for many decades. However, the computer-based PCG segmentation and classification methods are still not an end-to-end task; the process involves several tasks and challenges to overcome. The conducted evaluation scheme of the classifier also has a significant impact on the reliability of the proposed method. Our main contributions are twofold. First, we provided a systematic overview of various methods that can be employed in real applications for heart sound abnormalities. Second, we indicated potential future research opportunities. PCG segmentation is critical, and arguably the hardest stage in PCG processing. Basically, basic heart sounds can be identified by detecting the offset R-peak and T-wave in the ECG signal. Unfortunately, utilizing the ECG signal as a reference to the PCG segment is not always an easy operation because: it requires synchronous recording of ECG and PCG signals; precise identification of T-wave offset is often difficult; and ECG-PCG temporal alignment is not always consistent. Using machine learning methods in PCG segmentation involves multiple types and many features retrieved in both univariate or multivariate formats. This leads to selecting the best PCG-segmentation performance feature sets. PCG segmentation approaches that use featureless methods based on powerful statistical models have the potential to solve the problem of feature extraction and minimize the total computational cost of the segmentation approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Al Banna, M.H., et al.: Attention-based bi-directional long-short term memory network for earthquake prediction. IEEE Access 9, 56589–56603 (2021)

    Article  Google Scholar 

  2. Al Banna, M.H., et al.: Application of artificial intelligence in predicting earthquakes: state-of-the-art and future challenges. IEEE Access 8, 192880–192923 (2020)

    Article  Google Scholar 

  3. Al Nahian, M.J., Ghosh, T., Uddin, M.N., Islam, M.M., Mahmud, M., Kaiser, M.S.: Towards artificial intelligence driven emotion aware fall monitoring framework suitable for elderly people with neurological disorder. In: Mahmud, M., Vassanelli, S., Kaiser, M.S., Zhong, N. (eds.) BI 2020. LNCS (LNAI), vol. 12241, pp. 275–286. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59277-6_25

    Chapter  Google Scholar 

  4. Al Nahian, M.J., et al.: Towards an accelerometer-based elderly fall detection system using cross-disciplinary time series features. IEEE Access 9, 39413–39431 (2021). https://doi.org/10.1109/ACCESS.2021.3056441

    Article  Google Scholar 

  5. Ali, H.M., Kaiser, M.S., Mahmud, M.: Application of convolutional neural network in segmenting brain regions from MRI data. In: Liang, P., Goel, V., Shan, C. (eds.) Brain Informatics. LNCS, vol. 11976, pp. 136–146. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-37078-7_14

    Chapter  Google Scholar 

  6. Aradhya, V.M., Mahmud, M., Agarwal, B., Kaiser, M.: One shot cluster based approach for the detection of Covid-19 from chest x-ray images. Cogn. Comput. 1–9 (2021). https://doi.org/10.1007/s12559-020-09774-w

  7. Bhapkar, H.R., Mahalle, P.N., Shinde, G.R., Mahmud, M.: Rough sets in COVID-19 to predict symptomatic cases. In: Santosh, K.C., Joshi, A. (eds.) COVID-19: Prediction, Decision-Making, and its Impacts. LNDECT, vol. 60, pp. 57–68. Springer, Singapore (2021). https://doi.org/10.1007/978-981-15-9682-7_7

    Chapter  Google Scholar 

  8. Clifford, G.D., et al.: Recent advances in heart sound analysis. Physiol. Meas. 38, E10–E25 (2017)

    Article  Google Scholar 

  9. Deng, S.W., Han, J.Q.: Adaptive overlapping-group sparse denoising for heart sound signals. Biomed. Signal Process. Control 40, 49–57 (2018)

    Article  Google Scholar 

  10. Dey, N., Rajinikanth, V., Fong, S., Kaiser, M., Mahmud, M.: Social-group-optimization assisted Kapur’s entropy and morphological segmentation for automated detection of Covid-19 infection from computed tomography images. Cogn. Comput. 12(5), 1011–1023 (2020)

    Article  Google Scholar 

  11. Dominguez-Morales, J.P., Jimenez-Fernandez, A.F., Dominguez-Morales, M.J., Jimenez-Moreno, G.: Deep neural networks for the recognition and classification of heart murmurs using neuromorphic auditory sensors. IEEE Trans. Biomed. Circuits Syst. 12(1), 24–34 (2017)

    Article  Google Scholar 

  12. Fabietti, M., et al.: Neural network-based artifact detection in local field potentials recorded from chronically implanted neural probes. In: Proceedings of the IJCNN, pp. 1–8 (2020)

    Google Scholar 

  13. Gavrovska, A., Bogdanović, V., Reljin, I., Reljin, B.: Automatic heart sound detection in pediatric patients without electrocardiogram reference via pseudo-affine Wigner-Ville distribution and Haar wavelet lifting. Comput. Methods Programs Biomed. 113(2), 515–528 (2014)

    Article  Google Scholar 

  14. Hall, J.E., Hall, M.E.: Guyton and Hall Textbook of Medical Physiology e-Book. Elsevier Health Sciences (2020)

    Google Scholar 

  15. Homsi, M.N., et al.: Automatic heart sound recording classification using a nested set of ensemble algorithms. In: 2016 Computing in Cardiology Conference (CinC), pp. 817–820. IEEE (2016)

    Google Scholar 

  16. Jesmin, S., Kaiser, M.S., Mahmud, M.: Towards artificial intelligence driven stress monitoring for mental wellbeing tracking during Covid-19. In: Proceedings of WI-IAT 2020, pp. 1–6 (2021)

    Google Scholar 

  17. Jesmin, S., Kaiser, M.S., Mahmud, M.: Artificial and internet of healthcare things based Alzheimer care during COVID 19. In: Mahmud, M., Vassanelli, S., Kaiser, M.S., Zhong, N. (eds.) BI 2020. LNCS (LNAI), vol. 12241, pp. 263–274. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59277-6_24

    Chapter  Google Scholar 

  18. Kaiser, M.S., et al.: Advances in crowd analysis for urban applications through urban event detection. IEEE Trans. Intell. Transp. Syst. 19(10), 3092–3112 (2018)

    Article  Google Scholar 

  19. Kaiser, M., et al.: iWorksafe: towards healthy workplaces during Covid-19 with an intelligent pHealth app for industrial settings. IEEE Access 9, 13814–13828 (2021)

    Article  Google Scholar 

  20. Leng, S., San Tan, R., Chai, K.T.C., Wang, C., Ghista, D., Zhong, L.: The electronic stethoscope. Biomed. Eng. Online 14(1), 1–37 (2015)

    Google Scholar 

  21. Liu, C., et al.: An open access database for the evaluation of heart sound algorithms. Physiol. Meas. 37(12), 2181 (2016)

    Article  Google Scholar 

  22. Mahmud, M., Kaiser, M.S.: Machine learning in fighting pandemics: a COVID-19 case study. In: Santosh, K.C., Joshi, A. (eds.) COVID-19: Prediction, Decision-Making, and its Impacts. LNDECT, vol. 60, pp. 77–81. Springer, Singapore (2021). https://doi.org/10.1007/978-981-15-9682-7_9

    Chapter  Google Scholar 

  23. Mahmud, M., Kaiser, M.S., McGinnity, T.M., Hussain, A.: Deep learning in mining biological data. Cogn. Comput. 13(1), 1–33 (2020). https://doi.org/10.1007/s12559-020-09773-x

    Article  Google Scholar 

  24. Mahmud, M., et al.: A brain-inspired trust management model to assure security in a cloud based IoT framework for neuroscience applications. Cogn. Comput. 10(5), 864–873 (2018)

    Article  Google Scholar 

  25. Mahmud, M., Kaiser, M.S., Hussain, A., Vassanelli, S.: Applications of deep learning and reinforcement learning to biological data. IEEE Trans. Neural Netw. Learn. Syst. 29(6), 2063–2079 (2018)

    Article  MathSciNet  Google Scholar 

  26. Miah, Y., Prima, C.N.E., Seema, S.J., Mahmud, M., Shamim Kaiser, M.: Performance comparison of machine learning techniques in identifying dementia from open access clinical datasets. In: Saeed, F., Al-Hadhrami, T., Mohammed, F., Mohammed, E. (eds.) Advances on Smart and Soft Computing. AISC, vol. 1188, pp. 79–89. Springer, Singapore (2021). https://doi.org/10.1007/978-981-15-6048-4_8

    Chapter  Google Scholar 

  27. Nahiduzzaman, Md, Tasnim, M., Newaz, N.T., Kaiser, M.S., Mahmud, M.: Machine learning based early fall detection for elderly people with neurological disorder using multimodal data fusion. In: Mahmud, M., Vassanelli, S., Kaiser, M.S., Zhong, N. (eds.) BI 2020. LNCS (LNAI), vol. 12241, pp. 204–214. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59277-6_19

    Chapter  Google Scholar 

  28. Noman, F., et al.: A Markov-switching model approach to heart sound segmentation and classification. IEEE J. Biomed. Health Inform. 24(3), 705–716 (2019)

    Article  Google Scholar 

  29. Noor, M.B.T., Zenia, N.Z., Kaiser, M.S., Al Mamun, S., Mahmud, M.: Application of deep learning in detecting neurological disorders from magnetic resonance images: a survey on the detection of Alzheimer’s disease, Parkinson’s disease and schizophrenia. Brain Inform. 7(1), 1–21 (2020)

    Google Scholar 

  30. Noor, M.B.T., Zenia, N.Z., Kaiser, M.S., Mahmud, M., Al Mamun, S.: Detecting neurodegenerative disease from MRI: a brief review on a deep learning perspective. In: Liang, P., Goel, V., Shan, C. (eds.) Brain Informatics. LNCS, vol. 11976, pp. 115–125. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-37078-7_12

    Chapter  Google Scholar 

  31. Orojo, O., Tepper, J., McGinnity, T.M., Mahmud, M.: A multi-recurrent network for crude oil price prediction. In: Proceedings of the IEEE SSCI, pp. 2953–2958. IEEE (2019)

    Google Scholar 

  32. Rabby, G., Azad, S., Mahmud, M., Zamli, K.Z., Rahman, M.M.: TeKET: a tree-based unsupervised keyphrase extraction technique. Cogn. Comput. 12(4), 811–833 (2020)

    Article  Google Scholar 

  33. Ruiz, J., Mahmud, M., Modasshir, Md., Shamim Kaiser, M., for the Alzheimer’s Disease Neuroimaging Initiative, et al.: 3D DenseNet ensemble in 4-way classification of Alzheimer’s disease. In: Mahmud, M., Vassanelli, S., Kaiser, M.S., Zhong, N. (eds.) BI 2020. LNCS (LNAI), vol. 12241, pp. 85–96. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59277-6_8

  34. Schmidt, S.E., Holst-Hansen, C., Graff, C., Toft, E., Struijk, J.J.: Segmentation of heart sound recordings by a duration-dependent hidden Markov model. Physiol. Meas. 31(4), 513 (2010)

    Article  Google Scholar 

  35. Singh, A.K., Kumar, A., Mahmud, M., Kaiser, M.S., Kishore, A.: Covid-19 infection detection from chest X-ray images using hybrid social group optimization and support vector classifier. Cogn. Comput. 1–13 (2021). https://doi.org/10.1007/s12559-021-09848-3

  36. Springer, D., Zühlke, L., Mayosi, B., Tarassenko, L., Clifford, G.: Mobile phone-based rheumatic heart disease diagnosis. In: Appropriate Healthcare Technologies for Low Resource Settings (AHT 2014), pp. 1–4. IET (2014). https://doi.org/10.1049/cp.2014.0761

  37. Tang, H., Li, T., Qiu, T., Park, Y.: Segmentation of heart sounds based on dynamic clustering. Biomed. Signal Process. Control 7(5), 509–516 (2012)

    Article  Google Scholar 

  38. Vernekar, S., Nair, S., Vijaysenan, D., Ranjan, R.: A novel approach for classification of normal/abnormal phonocardiogram recordings using temporal signal analysis and machine learning. In: 2016 Computing in Cardiology Conference (CinC), pp. 1141–1144. IEEE (2016)

    Google Scholar 

  39. Watkins, J., Fabietti, M., Mahmud, M.: Sense: a student performance quantifier using sentiment analysis. In: Proceedings of the IJCNN, pp. 1–6 (2020)

    Google Scholar 

  40. WHO: Cardiovascular diseases (CVDs) (2021). https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds)

  41. Yahaya, S.W., Lotfi, A., Mahmud, M.: A consensus novelty detection ensemble approach for anomaly detection in activities of daily living. Appl. Soft Comput. 83, 105613 (2019)

    Google Scholar 

  42. Yahaya, S.W., Lotfi, A., Mahmud, M.: Towards a data-driven adaptive anomaly detection system for human activity. Pattern Recogn. Lett. 145, 200–207 (2021)

    Article  Google Scholar 

  43. Zhang, W., Han, J., Deng, S.: Heart sound classification based on scaled spectrogram and tensor decomposition. Expert Syst. Appl. 84, 220–231 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Shamim Kaiser .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Shaikh Salleh, S.H. et al. (2021). Key Techniques and Challenges for Processing of Heart Sound Signals. In: Mahmud, M., Kaiser, M.S., Kasabov, N., Iftekharuddin, K., Zhong, N. (eds) Applied Intelligence and Informatics. AII 2021. Communications in Computer and Information Science, vol 1435. Springer, Cham. https://doi.org/10.1007/978-3-030-82269-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-82269-9_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-82268-2

  • Online ISBN: 978-3-030-82269-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics