Skip to main content

A Machine Learning Driven Android Based Mobile Application for Flower Identification

  • Conference paper
  • First Online:
Applied Intelligence and Informatics (AII 2021)

Abstract

In the field of Botany the research of flower classification scheme is an extremely significant topic. A classifier of flowers by maximum precision will also carry numerous enjoyments to human lives. However, there are tranquil a few disclaim in the identification of flower images due to the multipart conditions of flowers, the resemblance connecting the unusual flowers of species, and the variations surrounded by the similar species of flowers. The classification of flower is largely depend on the Color, shape and texture features which needs populace to choose features for classification and the accurateness is not extremely high. We were designed an Android application using machine learning techniques for flower identification. In this paper, based on Image Net model of DNN Tensor Flow Framework platform, to get better the accuracy of flower classification significantly, the Deep Neural Network (DNN) knowledge were used to retrain the flower category datasets. We were used ten category datasets. The accuracy of Image Net based MobileBetV2 model was 98.47% and proposed Deep CNN Model accuracy was 89.87% in our result. Any user can identify the flower by using our application from the flower images.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abadi, M., et al.: Tensorflow: a system for large-scale machine learning. In: 12th \(\{\)USENIX\(\}\) Symposium on Operating Systems Design and Implementation (\(\{\)OSDI\(\}\) 16), pp. 265–283 (2016)

    Google Scholar 

  2. Abu, M.A., Indra, N.H., Abd Rahman, A.H., Sapiee, N.A., Ahmad, I.: A study on image classification based on deep learning and TensorFlow. Int. J. Eng. Res. Technol. 12(4), 563–569 (2019)

    Google Scholar 

  3. Al Banna, M.H., et al.: Attention-based bi-directional long-short term memory network for earthquake prediction. IEEE Access 9, 56589–56603 (2021)

    Article  Google Scholar 

  4. Al Banna, M.H., et al.: Application of artificial intelligence in predicting earthquakes: state-of-the-art and future challenges. IEEE Access 8, 192880–192923 (2020)

    Article  Google Scholar 

  5. Al Nahian, M.J., Ghosh, T., Uddin, M.N., Islam, M.M., Mahmud, M., Kaiser, M.S.: Towards artificial intelligence driven emotion aware fall monitoring framework suitable for elderly people with neurological disorder. In: Mahmud, M., Vassanelli, S., Kaiser, M.S., Zhong, N. (eds.) BI 2020. LNCS (LNAI), vol. 12241, pp. 275–286. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59277-6_25

    Chapter  Google Scholar 

  6. Al Nahian, M.J., et al.: Towards an accelerometer-based elderly fall detection system using cross-disciplinary time series features. IEEE Access 9, 39413–39431 (2021). https://doi.org/10.1109/ACCESS.2021.3056441

    Article  Google Scholar 

  7. Albadarneh, A., Ahmad, A.: Automated flower species detection and recognition from digital images. IJCSNS Int. J. Comput. Sci. Netw. Secur. 17(4), 144–151 (2017)

    Google Scholar 

  8. Ali, H.M., Kaiser, M.S., Mahmud, M.: Application of convolutional neural network in segmenting brain regions from MRI data. In: Liang, P., Goel, V., Shan, C. (eds.) Brain Informatics. LNCS, pp. 136–146. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-37078-7_14

    Chapter  Google Scholar 

  9. Almogdady, H., Manaseer, S., Hiary, H.: A flower recognition system based on image processing and neural networks. Int. J. Sci. Technol. Res. 7(11), 166–173 (2018)

    Google Scholar 

  10. Angelova, A., Zhu, S., Lin, Y.: Image segmentation for large-scale subcategory flower recognition. In: 2013 IEEE Workshop on Applications of Computer Vision (WACV), pp. 39–45. IEEE (2013)

    Google Scholar 

  11. Aradhya, V.M., Mahmud, M., Agarwal, B., Kaiser, M.: One shot cluster based approach for the detection of COVID-19 from chest x-ray images. Cogn. Comput. 1–9 (2021). https://doi.org/10.1007/s12559-020-09774-w

  12. Bhapkar, H.R., Mahalle, P.N., Shinde, G.R., Mahmud, M.: Rough sets in COVID-19 to predict symptomatic cases. In: Santosh, K.C., Joshi, A. (eds.) COVID-19: Prediction, Decision-Making, and its Impacts. LNDECT, vol. 60, pp. 57–68. Springer, Singapore (2021). https://doi.org/10.1007/978-981-15-9682-7_7

    Chapter  Google Scholar 

  13. Chithra, P., Bhavani, P.: A study on various image processing techniques. Int. J. Emerg. Technol. Innov. Eng. 5(5), 316–322 (2019)

    Google Scholar 

  14. Chollet, F.: Xception: deep learning with depthwise separable convolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1251–1258 (2017)

    Google Scholar 

  15. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255. IEEE (2009)

    Google Scholar 

  16. Deng, J., Li, K., Do, M., Su, H., Fei-Fei, L.: Construction and analysis of a large scale image ontology. Vis. Sci. Soc. 186(2) (2009)

    Google Scholar 

  17. Dey, N., Rajinikanth, V., Fong, S., Kaiser, M., Mahmud, M.: Social-group-optimization assisted Kapur’s entropy and morphological segmentation for automated detection of COVID-19 infection from computed tomography images. Cogn. Comput. 12(5), 1011–1023 (2020). https://doi.org/10.1007/s12559-020-09751-3

    Article  Google Scholar 

  18. Fabietti, M., et al.: Neural network-based artifact detection in local field potentials recorded from chronically implanted neural probes. In: Proceedings of IJCNN, pp. 1–8 (2020)

    Google Scholar 

  19. Fei-Fei, L., Deng, J., Li, K.: ImageNet: constructing a large-scale image database. J. Vis. 9(8), 1037 (2009)

    Article  Google Scholar 

  20. Hiary, H., Saadeh, H., Saadeh, M., Yaqub, M.: Flower classification using deep convolutional neural networks. IET Comput. Vis. 12(6), 855–862 (2018)

    Article  Google Scholar 

  21. Hsu, T.H., Lee, C.H., Chen, L.H.: An interactive flower image recognition system. Multimed. Tools Appl. 53(1), 53–73 (2011). https://doi.org/10.1007/s11042-010-0490-6

    Article  Google Scholar 

  22. Jesmin, S., Kaiser, M.S., Mahmud, M.: Towards artificial intelligence driven stress monitoring for mental wellbeing tracking during COVID-19. In: Proceedings of WI-IAT 2020, pp. 1–6 (2021)

    Google Scholar 

  23. Jesmin, S., Kaiser, M.S., Mahmud, M.: Artificial and internet of healthcare things based Alzheimer care during COVID 19. In: Mahmud, M., Vassanelli, S., Kaiser, M.S., Zhong, N. (eds.) BI 2020. LNCS (LNAI), vol. 12241, pp. 263–274. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59277-6_24

    Chapter  Google Scholar 

  24. Kaiser, M.S., et al.: Advances in crowd analysis for urban applications through urban event detection. IEEE Trans. Intell. Transp. Syst. 19(10), 3092–3112 (2018)

    Article  Google Scholar 

  25. Kaiser, M., et al.: iworksafe: towards healthy workplaces during COVID-19 with an intelligent Phealth app for industrial settings. IEEE Access 9, 13814–13828 (2021)

    Article  Google Scholar 

  26. Kamilaris, A., Prenafeta-Boldú, F.X.: Deep learning in agriculture: a survey. Comput. Electron. Agric. 147, 70–90 (2018)

    Article  Google Scholar 

  27. Ketkar, N.: Introduction to Keras. In: Deep Learning with Python, pp. 95–109. Springer, Berkeley (2017). https://doi.org/10.1007/978-1-4842-2766-4_7

    Chapter  Google Scholar 

  28. Lakesar, A.L.: A review on flower classification using neural network classifier. Int. J. Sci. Res. 7(5), 1644–1646 (2018)

    Google Scholar 

  29. Liu, Y., Tang, F., Zhou, D., Meng, Y., Dong, W.: Flower classification via convolutional neural network. In: 2016 IEEE International Conference on Functional-Structural Plant Growth Modeling, Simulation, Visualization and Applications (FSPMA), pp. 110–116. IEEE (2016)

    Google Scholar 

  30. Mahmud, M., Kaiser, M.S.: Machine learning in fighting pandemics: a COVID-19 case study. In: Santosh, K.C., Joshi, A. (eds.) COVID-19: Prediction, Decision-Making, and its Impacts. LNDECT, vol. 60, pp. 77–81. Springer, Singapore (2021). https://doi.org/10.1007/978-981-15-9682-7_9

    Chapter  Google Scholar 

  31. Mahmud, M., Kaiser, M.S., McGinnity, T., Hussain, A.: Deep learning in mining biological data. Cogn. Comput. 13(1), 1–33 (2021). https://doi.org/10.1007/s12559-020-09773-x

    Article  Google Scholar 

  32. Mahmud, M.: A brain-inspired trust management model to assure security in a cloud based IoT framework for neuroscience applications. Cogn. Comput. 10(5), 864–873 (2018). https://doi.org/10.1007/s12559-018-9543-3

    Article  Google Scholar 

  33. Mahmud, M., Kaiser, M.S., Hussain, A., Vassanelli, S.: Applications of deep learning and reinforcement learning to biological data. IEEE Trans. Neural Netw. Learn. Syst. 29(6), 2063–2079 (2018)

    Article  MathSciNet  Google Scholar 

  34. Miah, Y., Prima, C.N.E., Seema, S.J., Mahmud, M., Shamim Kaiser, M.: Performance comparison of machine learning techniques in identifying dementia from open access clinical datasets. In: Saeed, F., Al-Hadhrami, T., Mohammed, F., Mohammed, E. (eds.) Advances on Smart and Soft Computing. AISC, vol. 1188, pp. 79–89. Springer, Singapore (2021). https://doi.org/10.1007/978-981-15-6048-4_8

    Chapter  Google Scholar 

  35. Mukane, S., Kendule, J.: Flower classification using neural network based image processing. IOSR J. Electron. Commun. Eng 7, 80–85 (2013)

    Article  Google Scholar 

  36. Nahiduzzaman, M., Tasnim, M., Newaz, N.T., Kaiser, M.S., Mahmud, M.: Machine learning based early fall detection for elderly people with neurological disorder using multimodal data fusion. In: Mahmud, M., Vassanelli, S., Kaiser, M.S., Zhong, N. (eds.) BI 2020. LNCS (LNAI), vol. 12241, pp. 204–214. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59277-6_19

    Chapter  Google Scholar 

  37. Nilsback, M.E., Zisserman, A.: A visual vocabulary for flower classification. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2006), vol. 2, pp. 1447–1454. IEEE (2006)

    Google Scholar 

  38. Nilsback, M.E., Zisserman, A.: Delving deeper into the whorl of flower segmentation. Image Vis. Comput. 28(6), 1049–1062 (2010)

    Article  Google Scholar 

  39. Noor, M.B.T., Zenia, N.Z., Kaiser, M.S., Al Mamun, S., Mahmud, M.: Application of deep learning in detecting neurological disorders from magnetic resonance images: a survey on the detection of Alzheimer’s disease, Parkinson’s disease and schizophrenia. Brain Inform. 7(1), 1–21 (2020)

    Google Scholar 

  40. Noor, M.B.T., Zenia, N.Z., Kaiser, M.S., Al Mahmud, M., Mamun, S.: Detecting neurodegenerative disease from MRI: a brief review on a deep learning perspective. In: Liang, P., Goel, V., Shan, C. (eds.) BI 2019. LNCS, vol. 11976, pp. 115–125. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-37078-7_12

    Chapter  Google Scholar 

  41. Orojo, O., Tepper, J., McGinnity, T.M., Mahmud, M.: A multi-recurrent network for crude oil price prediction. In: Proceedings of IEEE SSCI, pp. 2953–2958. IEEE (2019)

    Google Scholar 

  42. Pardee, W., Yusungnern, P., Sripian, P.: Flower identification system by image processing. In: 3rd International Conference on Creative Technology CRETECH, vol. 1, pp. 1–4 (2015)

    Google Scholar 

  43. Rabby, G., Azad, S., Mahmud, M., Zamli, K.Z., Rahman, M.M.: TeKET: a tree-based unsupervised keyphrase extraction technique. Cogn. Comput. 12(4), 811–833 (2020). https://doi.org/10.1007/s12559-019-09706-3

    Article  Google Scholar 

  44. Ruiz, J., Mahmud, M., Modasshir, Md., Shamim Kaiser, M.: 3D DenseNet ensemble in 4-way classification of Alzheimer’s disease. In: Mahmud, M., Vassanelli, S., Kaiser, M.S., Zhong, N. (eds.) BI 2020. LNCS (LNAI), vol. 12241, pp. 85–96. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59277-6_8 Alzheimer’s Disease Neuroimaging Initiative

    Chapter  Google Scholar 

  45. Russakovsky, O., et al.: ImageNet large scale visual recognition challenge. Int. J. Comput. Vis. 115(3), 211–252 (2015). https://doi.org/10.1007/s11263-015-0816-y

    Article  MathSciNet  Google Scholar 

  46. Shaparia, R., Patel, N., Shah, Z.: Flower classification using texture and color features. Kalpa Publ. Comput. 2, 113–118 (2017)

    Article  Google Scholar 

  47. Singh, A.K., Kumar, A., Mahmud, M., Kaiser, M.S., Kishore, A.: COVID-19 infection detection from chest x-ray images using hybrid social group optimization and support vector classifier. Cogn. Comput. 1–13 (2021). https://doi.org/10.1007/s12559-021-09848-3

  48. Valliammal, N., Geethalakshmi, S.: Automatic recognition system using preferential image segmentation for leaf and flower images. Comput. Sci. Eng. 1(4), 13 (2011)

    Google Scholar 

  49. Vincent, J.: Google’s new machine learning framework is going to put more AI on your phone (2017). https://www.theverge.com/2017/5/17/15645908/google-ai-tensorflowlite-machine-learning-announcement-io-2017

  50. Watkins, J., Fabietti, M., Mahmud, M.: Sense: a student performance quantifier using sentiment analysis. In: Proceedings of IJCNN, pp. 1–6 (2020)

    Google Scholar 

  51. Yahaya, S.W., Lotfi, A., Mahmud, M.: A consensus novelty detection ensemble approach for anomaly detection in activities of daily living. Appl. Soft Comput. 83, 105613 (2019)

    Article  Google Scholar 

  52. Yahaya, S.W., Lotfi, A., Mahmud, M.: Towards a data-driven adaptive anomaly detection system for human activity. Pattern Recogn. Lett. 145, 200–207 (2021)

    Article  Google Scholar 

  53. Yang, K., Qinami, K., Fei-Fei, L., Deng, J., Russakovsky, O.: Towards fairer datasets: filtering and balancing the distribution of the people subtree in the ImageNet hierarchy. In: Proceedings of the 2020 Conference on Fairness, Accountability, and Transparency, pp. 547–558 (2020)

    Google Scholar 

  54. Zhou, H., Zheng, J., Wei, L.: Texture aware image segmentation using graph cuts and active contours. Pattern Recogn. 46(6), 1719–1733 (2013)

    Article  Google Scholar 

Download references

Acknowledgement

This work was supported by the Sunway University Research Grant (GRTIN-IRG-05-2021). The authors also express their gratitude to the Department of Computer Science and Engineering, BGC Trust University Bangladesh.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Islam, T., Absar, N., Adamov, A.Z., Khandaker, M.U. (2021). A Machine Learning Driven Android Based Mobile Application for Flower Identification. In: Mahmud, M., Kaiser, M.S., Kasabov, N., Iftekharuddin, K., Zhong, N. (eds) Applied Intelligence and Informatics. AII 2021. Communications in Computer and Information Science, vol 1435. Springer, Cham. https://doi.org/10.1007/978-3-030-82269-9_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-82269-9_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-82268-2

  • Online ISBN: 978-3-030-82269-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics