Skip to main content

Classification of First Trimester Ultrasound Images Using Deep Convolutional Neural Network

  • Conference paper
  • First Online:
Applied Intelligence and Informatics (AII 2021)

Abstract

Fetal ultrasound imaging is commonly used in correctly identifying fetal anatomical structures. This is particularly important in the first-trimester to diagnose any possible fetal malformations. However, inter-observer variation in identifying the correct image can lead to misdiagnosis of fetal growth and hence to aid the sonographers machine learning techniques, such as deep learning, have been increasingly used. This work describes the use of ResNet50, a pretrained deep convolutional neural network model, in classifying \(11-13^{+6}\) weeks Crown to Rump Length (CRL) fetal ultrasound images into correct and incorrect categories. The presented model adopted a skip connection approach to create a deeper network with hyperparameters which were tuned for the task. This article discusses how to distinguish Crown to Rump Length (CRL) fetal ultrasound images into correct and incorrect categories using ResNet50. The presented model used a skip link approach to construct a deeper network with task-specific hyperparameters. The model was applied to a real data set of 900 CRL images, 450 of which were right and 450 of which were incorrect, and it was able to identify the images with an accuracy of 87% on the preparation, validation, and test data sets. This model can be used by the sonographers to identify correct images for CRL measurements and hence help avoid incorrect dating of pregnancies by reducing the inter-observer variation. This can also be used to train sonographers in performing first-trimester scans.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Al Nahian, M.J., et al.: Towards artificial intelligence driven emotion aware fall monitoring framework suitable for elderly people with neurological disorder. In: Proceedings of the Brain Informatics, pp. 275–286 (2020)

    Google Scholar 

  2. Al Nahian, M.J., et al.: Towards an accelerometer-based elderly fall detection system using cross-disciplinary time series features. IEEE Access 9, 39413–39431 (2021)

    Article  Google Scholar 

  3. Ali, H.M., Kaiser, M.S., Mahmud, M.: Application of convolutional neural network in segmenting brain regions from MRI data. In: Proceedings of the Brain Informatics, pp. 136–146 (2019)

    Google Scholar 

  4. Aradhya, V.M., Mahmud, M., Agarwal, B., Kaiser, M.: One shot cluster based approach for the detection of covid-19 from chest x-ray images. Cogn. Comput. 1–9 (2021). https://doi.org/10.1007/s12559-020-09774-w

  5. Bandeira Diniz, P., Yin, Y., Collins, S.: Deep learning strategies for ultrasound in pregnancy. Eur. Med. J. 6(1) 73–80 (2020)

    Google Scholar 

  6. Bhapkar, H.R., Mahalle, P.N., Shinde, G.R., Mahmud, M.: Rough sets in COVID-19 to predict symptomatic cases. In: Santosh, K.C., Joshi, A. (eds.) COVID-19: Prediction, Decision-Making, and its Impacts. LNDECT, vol. 60, pp. 57–68. Springer, Singapore (2021). https://doi.org/10.1007/978-981-15-9682-7_7

    Chapter  Google Scholar 

  7. Blondel, B., Morin, I., Platt, R.W., Kramer, M.S., Usher, R., Bréart, G.: Algorithms for combining menstrual and ultrasound estimates of gestational age: consequences for rates of preterm and postterm birth. BJOG Int. J. Obstet. Gynaecol. 109(6), 718–720 (2002)

    Google Scholar 

  8. Burgos-Artizzu, X.P., et al.: Evaluation of deep convolutional neural networks for automatic classification of common maternal fetal ultrasound planes. Sci. Rep. 10(1), 1–12 (2020)

    Article  Google Scholar 

  9. Caughey, A.B., Nicholson, J.M., Washington, A.E.: First-vs second-trimester ultrasound: the effect on pregnancy dating and perinatal outcomes. Am. J. Obstet. Gynecol. 198(6), 703 (2008)

    Article  Google Scholar 

  10. Deepika, P., Suresh, R., Pabitha, P.: Defending against child death: deep learning-based diagnosis method for abnormal identification of fetus ultrasound images. Comput. Intell. 37(1), 128–154 (2021)

    Article  MathSciNet  Google Scholar 

  11. Dey, N., Rajinikanth, V., Fong, S., Kaiser, M., Mahmud, M.: Social-group-optimization assisted Kapur’s entropy and morphological segmentation for automated detection of covid-19 infection from computed tomography images. Cogn. Comput. 12(5), 1011–1023 (2020)

    Article  Google Scholar 

  12. Fabietti, M., Mahmud, M., Lotfi, A.: Machine learning in analysing invasively recorded neuronal signals: available open access data sources. In: Proceedings of the Brain Informatics, pp. 151–162 (2020)

    Google Scholar 

  13. Fabietti, M., Mahmud, M., et al.: Neural network-based artifact detection in local field potentials recorded from chronically implanted neural probes. In: Proceedings of the IJCNN, pp. 1–8 (2020)

    Google Scholar 

  14. Fabietti, M., et al.: Adaptation of convolutional neural networks for multi-channel artifact detection in chronically recorded local field potentials. In: Proceedings of the SSCI, pp. 1607–1613 (2020)

    Google Scholar 

  15. Fabietti, M., et al.: Artifact detection in chronically recorded local field potentials using long-short term memory neural network. In: Proceedings of the AICT, pp. 1–6 (2020)

    Google Scholar 

  16. Farhin, F., Kaiser, M.S., Mahmud, M.: Secured smart healthcare system: blockchain and bayesian inference based approach. In: Proceedings of the TCCE, pp. 455–465 (2021)

    Google Scholar 

  17. Jamal, I., Akram, M.U., Tariq, A.: Retinal image preprocessing: background and noise segmentation. Telkomnika 10(3), 537–544 (2012)

    Article  Google Scholar 

  18. Jokandan, A.S., et al.: An uncertainty-aware transfer learning-based framework for covid-19 diagnosis (2020)

    Google Scholar 

  19. Kagan, K.O., Hoopmann, M., Baker, A., Huebner, M., Abele, H., Wright, D.: Impact of bias in crown-rump length measurement at first-trimester screening for trisomy 21. Ultrasound Obstet. Gynecol. 40(2), 135–139 (2012)

    Article  Google Scholar 

  20. Kaiser, M., et al.: iworksafe: towards healthy workplaces during covid-19 with an intelligent phealth app for industrial settings. IEEE Access 9, 13814–13828 (2021)

    Article  Google Scholar 

  21. Kalish, R.B., et al.: First-and second-trimester ultrasound assessment of gestational age. Am. J. Obstet. Gynecol. 191(3), 975–978 (2004)

    Article  Google Scholar 

  22. Kim, B., Kim, K.C., Park, Y., Kwon, J.Y., Jang, J., Seo, J.K.:Machine-learning-based automatic identification of fetal abdominal circumference from ultrasound images. Physiol. Meas. 39(10), 105007 (2018)

    Google Scholar 

  23. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444 (2015)

    Article  Google Scholar 

  24. Liu, Z., Yang, C., Huang, J., Liu, S., Zhuo, Y., Lu, X.: Deep learning framework based on integration of s-mask R-CNN and inception-v3 for ultrasound image-aided diagnosis of prostate cancer. Future Gener. Comput. Syst. 114, 358–367 (2020)

    Article  Google Scholar 

  25. Lundervold, A.S., Lundervold, A.: An overview of deep learning in medical imaging focusing on MRI. Z. Med. Phys. 29(2), 102–127 (2019)

    Article  Google Scholar 

  26. Mahmud, M., Kaiser, M.S.: Machine learning in fighting pandemics: a COVID-19 case study. In: Santosh, K.C., Joshi, A. (eds.) COVID-19: Prediction, Decision-Making, and its Impacts. LNDECT, vol. 60, pp. 77–81. Springer, Singapore (2021). https://doi.org/10.1007/978-981-15-9682-7_9

    Chapter  Google Scholar 

  27. Mahmud, M., Kaiser, M.S., McGinnity, T.M., Hussain, A.: Deep learning in mining biological data. Cogn. Comput. 13(1), 1–33 (2020)

    Article  Google Scholar 

  28. Mahmud, M., Kaiser, M.S., McGinnity, T.M., Hussain, A.: Deep learning in mining biological data. Cogn. Comput. 13(1), 1–33 (2021)

    Article  Google Scholar 

  29. Mahmud, M., Kaiser, M.S., Hussain, A., Vassanelli, S.: Applications of deep learning and reinforcement learning to biological data. IEEE Trans. Neural Netw. Learn. Syst. 29(6), 2063–2079 (2018)

    Article  MathSciNet  Google Scholar 

  30. Mahmud, M., et al.: A brain-inspired trust management model to assure security in a cloud based iot framework for neuroscience applications. Cogn. Comput. 10(5), 864–873 (2018)

    Article  Google Scholar 

  31. Miah, Y., Prima, C.N.E., Seema, S.J., Mahmud, M., Kaiser, M.S.: Performance comparison of machine learning techniques in identifying dementia from open access clinical datasets. In: Proceedings of the ICACIn, pp. 79–89 (2021)

    Google Scholar 

  32. Nahiduzzaman, M., et al.: Machine learning based early fall detection for elderly people with neurological disorder using multimodal data fusion. In: Proceedings of the Brain Informatics, pp. 204–214 (2020)

    Google Scholar 

  33. Namburete, A.I., Xie, W., Yaqub, M., Zisserman, A., Noble, J.A.: Fully-automated alignment of 3d fetal brain ultrasound to a canonical reference space using multi-task learning. Med. Image Anal. 46, 1–14 (2018)

    Article  Google Scholar 

  34. Napolitano, R., et al.: Pregnancy dating by fetal crown-rump length: a systematic review of charts. BJOG Int. J. Obstet. Gynaecol. 121(5), 556–565 (2014)

    Google Scholar 

  35. Noor, M.B.T., Zenia, N.Z., et al.: Application of deep learning in detecting neurological disorders from magnetic resonance images: a survey on the detection of alzheimer’s disease, parkinson’s disease and schizophrenia. Brain Informatics 7(1), 1–21 (2020)

    Article  Google Scholar 

  36. Noor, M.B.T., et al.: Detecting Neurodegenerative Disease from MRI: A Brief Review on a Deep Learning Perspective. In: Proceedings of the Brain Informatics, pp. 115–125 (2019)

    Google Scholar 

  37. Committee on Obstetric Practice, American Institute of Ultrasound in Medicine, & Society for Maternal-Fetal Medicine, et al.: Committee opinion no 700: methods for estimating the due date. Obstet. Gynecol. 129(5), e150–e154 (2017)

    Google Scholar 

  38. Pashaj, S., Merz, E., Petrela, E.: Automated ultrasonographic measurement of basic fetal growth parameters. Ultraschall in der Medizin Eur. J. Ultrasound 34(02), 137–144 (2013)

    Google Scholar 

  39. Philip, M.E., Sowmya, A., Avnet, H., Ferreira, A., Stevenson, G., Welsh, A.: Convolutional neural networks for automated fetal cardiac assessment using 4d b-mode ultrasound. In: 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019), pp. 824–828. IEEE (2019)

    Google Scholar 

  40. Rabby, G., et al.: TeKET: a tree-based unsupervised keyphrase extraction technique. Cogn. Comput. 12(4), 811–833 (2020). https://doi.org/10.1007/s12559-019-09706-3

  41. Raghu, M., Zhang, C., Kleinberg, J., Bengio, S.: Transfusion: understanding transfer learning for medical imaging (2019)

    Google Scholar 

  42. Ruiz, J., Mahmud, M., Modasshir, M., Kaiser, M.S., et al.: 3d densenet ensemble in 4-way classification of alzheimer’s disease. In: Proceedings of the Brain Informatics, pp. 85–96 (2020)

    Google Scholar 

  43. Sahiner, B., et al.: Deep learning in medical imaging and radiation therapy. Med. Phys. 46(1), e1–e36 (2019)

    Article  MathSciNet  Google Scholar 

  44. Sharma, N., Jain, V., Mishra, A.: An analysis of convolutional neural networks for image classification. Procedia Comput. Sci. 132, 377–384 (2018)

    Article  Google Scholar 

  45. Simard, P.Y., Steinkraus, D., Platt, J.C., et al.: Best practices for convolutional neural networks applied to visual document analysis. In: Icdar, vol. 3. Citeseer (2003)

    Google Scholar 

  46. Singh, A.K., Kumar, A., Mahmud, M., Kaiser, M.S., Kishore, A.: Covid-19 infection detection from chest x-ray images using hybrid social group optimization and support vector classifier. Cogn. Comput. 1–13 (2021)

    Google Scholar 

  47. Souka, A.P., Pilalis, A., Papastefanou, I., Salamalekis, G., Kassanos, D.: Reproducibility study of crown-rump length and biparietal diameter measurements in the first trimester. Prenat. Diagn. 32(12), 1158–1165 (2012)

    Article  Google Scholar 

  48. Suk, H.I., Liu, M., Yan, P., Lian, C.: Machine Learning in Medical Imaging: 10th International Workshop, MLMI 2019, Held in Conjunction with MICCAI 2019, Shenzhen, China, October 13, 2019, Proceedings, vol. 11861. Springer Nature (2019)

    Google Scholar 

  49. Taipale, P., Hiilesmaa, V.: Predicting delivery date by ultrasound and last menstrual period in early gestation. Obstet. Gynecol. 97(2), 189–194 (2001)

    Google Scholar 

  50. Wang, Z., Yu, G., Kang, Y., Zhao, Y., Qu, Q.: Breast tumor detection in digital mammography based on extreme learning machine. Neurocomputing 128, 175–184 (2014)

    Article  Google Scholar 

  51. Watkins, J., Fabietti, M., Mahmud, M.: Sense: a student performance quantifier using sentiment analysis. In: Proceedings of the IJCNN, pp. 1–6 (2020)

    Google Scholar 

  52. Yahaya, S.W., Lotfi, A., Mahmud, M.: Detecting anomaly and its sources in activities of daily living. SN Comput. Sci. 2(1), 1–18 (2021)

    Article  Google Scholar 

  53. Yahaya, S.W., Lotfi, A., Mahmud, M.: Towards a data-driven adaptive anomaly detection system for human activity. Pattern Recognit. Lett. 145, 200–207 (2021)

    Article  Google Scholar 

  54. Ye, J., et al.: A deep convolutional neural network based hybrid framework for fetal head standard plane identification. Authorea Preprints (2020)

    Google Scholar 

  55. Zhang, J., Petitjean, C., Lopez, P., Ainouz, S.: Direct estimation of fetal head circumference from ultrasound images based on regression CNN. In: Medical Imaging with Deep Learning, pp. 914–922. PMLR (2020)

    Google Scholar 

Download references

Acknowledgements

Data used in the preparation of this article were obtained from the Fetal Medicine Centre at Southend University Hospital.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mufti Mahmud .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Singh, R., Mahmud, M., Yovera, L. (2021). Classification of First Trimester Ultrasound Images Using Deep Convolutional Neural Network. In: Mahmud, M., Kaiser, M.S., Kasabov, N., Iftekharuddin, K., Zhong, N. (eds) Applied Intelligence and Informatics. AII 2021. Communications in Computer and Information Science, vol 1435. Springer, Cham. https://doi.org/10.1007/978-3-030-82269-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-82269-9_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-82268-2

  • Online ISBN: 978-3-030-82269-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics