Skip to main content

Simulation of Diffusion Processes in Bimetallic Nanofilms

  • Chapter
  • First Online:
Recent Advances in Computational Optimization (WCO 2020)

Part of the book series: Studies in Computational Intelligence ((SCI,volume 986))

Included in the following conference series:

  • 256 Accesses

Abstract

Surface diffusion plays a crucial role in the formation of the shape and morphology of growing nanoparticles and nanofilms. Bulk heterodiffusion occurs at uneven (irregular) concentrations of several metals, in the presence of free energy in the system. Atoms of each sort tend to be evenly distributed in volume and form mixed bonds. In this paper, we propose an approach for modeling diffusion processes in nanoalloys by the vacancy mechanism. It is a hybrid Monte Carlo approach based on computing the probability for a transition of each atom belonging to the first three coordination spheres. The energy of the system is computed with a tight binding potential. The efficiency of the approach is demonstrated simulating Au–Ag bimetallic nanofilms with a different number of vacancies in the crystal lattice and a different temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abraham, A., Nie, H., Schoenitz, M., et al.: Bimetal Al-Ni nano-powders for energetic formulations. Combust. Flame 173, 179–186 (2016). https://doi.org/10.1016/j.combustflame.2016.08.015

    Article  Google Scholar 

  2. Ali, S., Myasnichenko, V.S., Neyts, E.C.: Size-dependent strain and surface energies of gold nanoclusters. Phys. Chem. Chem. Phys. 18(2), 792–800 (2016). https://doi.org/10.1039/C5CP06153A

  3. Babicheva, R.I., Semenov, A.S., Dmitriev, S.V., Zhou, K.: Effect of grain boundary segregations on martensitic transformation temperatures in NiTi bi-crystals. Lett. Mater. 9(2), 162–167 (2019). https://doi.org/10.22226/2410-3535-2019-2-162-167

    Article  Google Scholar 

  4. Bashkova, D.A., Gafner, Y.Y., Gafner, S.L.: On the prospects of using a phase transition in Ag nanoclusters for information recording processes. Lett. Mater. 9(4), 382–385 (2019). https://doi.org/10.22226/2410-3535-2019-4-382-385

    Article  Google Scholar 

  5. Cleri, F., Rosato, V.: Tight-binding potentials for transition metals and alloys. Phys. Rev. B 48(1), 22–33 (1993). https://doi.org/10.1103/PhysRevB.48.22

    Article  Google Scholar 

  6. Davoodi, J., Mehri, L.: Molecular dynamics simulation of solidification of ag-x%aunanoalloy. Defect Diffus. Forum 312–315, 143–148 (2011). https://doi.org/10.4028/www.scientific.net/DDF.312-315.143

    Article  Google Scholar 

  7. Galashev, A.Y., Rakhmanova, O.R., Kovrov, V.A., Zaikov, Y.P.: Molecular dynamics study of the stability of aluminium coatings on iron. Lett. Mater. 9(4), 436–441 (2019). https://doi.org/10.22226/2410-3535-2019-4-436-441

    Article  Google Scholar 

  8. Hodak, J.H., Henglein, A., Giersig, M., Hartland, G.V.: Laser-induced inter-diffusion in AuAg core-shell nanoparticles. J. Phys. Chem. B 104(49), 11708–11718 (2000). https://doi.org/10.1021/jp002438r

    Article  Google Scholar 

  9. Husic, B.E., Schebarchov, D., Wales, D.J.: Impurity effects on solid—solid transitionsin atomic clusters. NANO 8(43), 18326–18340 (2016). https://doi.org/10.1039/C6NR06299G

    Article  Google Scholar 

  10. Harrison, W.A.: Tight-binding methods. Surf. Sci. 299–300, 298–310 (1994). https://doi.org/10.1016/0039-6028(94)90662-9

    Article  Google Scholar 

  11. Jahangiri, M., Bajgholi, A., Fallah, A., Khodabandeh, A.: Effect of annealing methodand applied stress on aging behavior of copper-aluminum bimetals. J. Ofalloys Compd. 816,(2019). https://doi.org/10.1016/j.jallcom.2019.152676

    Article  Google Scholar 

  12. Julin, J., Napari, I., Vehkamäki, H.: Comparative study on methodology in molecular dynamics simulation of nucleation. J. Chem. Phys. 126(22), 224517-1–224517-8 (2007). https://doi.org/10.1063/1.2740269

  13. Korznikova, E.A., Sharapov, E.A., Khalikov, A.R., Dmitriev, S.V.: Simulation of the binary alloy ordering kinetics during diffusion bonding. Mater. Technol. Des. 1(1), 58–64 (2019) (in Russian)

    Google Scholar 

  14. Li, J.H., Dai, X.D., Liang, S.H., et al.: (2008) Interatomic potentials of the binary transition metal systems and some applications in materials physics. Phys. Rep. 455(1–3), 1–134 (2008). https://doi.org/10.1016/j.physrep.2007.09.004

    Article  Google Scholar 

  15. Li, X.-Y., Zhu, B., Qi, R., Gao, Y.: Real-time simulation of nonequilibriumnano-crystal transformations. Adv. Theory Simul. 2(1), 1800127-1–1800127-8 (2018). https://doi.org/10.1002/adts.201800127

  16. Lobzenko, I.P., Khalikov, A.R., Sharapov, E.A., et al.: Monte-Carlo simulation of the process of diffusion welding of two metals through a gasket. Basic Probl. Mater. Sci. 16(1), 47–54 (2019). https://doi.org/10.25712/ASTU.1811-1416.2019.01.007

    Article  Google Scholar 

  17. Makarov, S.V., Olimov, M.G., Plotnikov, V.A., Hlebutina, S.V., Yakovleva, O.S.: Formation of a diffusion zone at the interface of nickel/aluminum bimetal. News of Altai State University 99(1), 29–33 (2018). https://doi.org/10.14258/izvasu(2018)1-04

  18. Mao, S., Zhang, Y., Li, H., et al.: Writing of nanowiresvia high viscosity-induced nano diffusive layer. J. Mater. Chem. C 5(45), 11666–11671 (2017). https://doi.org/10.1039/C7TC03962J

    Article  Google Scholar 

  19. Myasnichenko, V.S., Starostenkov, M.D.: Formation of fivefold axes in the FCC-metal nanoclusters. Appl. Surf. Sci. 260, 51–53 (2012). j.apsusc.2012.03.039

    Google Scholar 

  20. Myasnichenko, V., Kirilov, L., Mikhov, R., Fidanova, S., Sdobnyakov, N.: Simulatedannealing method for metal nanoparticle structures optimization. Adv. Comput. Ind. Math.: Stud. Comput. Intell. 793, 277–288 (2019). https://doi.org/10.1007/978-3-319-97277-0_23

  21. Myasnichenko, V., Sdobnyakov, N., Kirilov, L., Mikhov, R., Fidanova, S.: Structural instability of gold and bimetallic nanowires using Monte Carlo simulation. In: Recent Advances in Computational Optimization. Studies in Computational Intelligence, vol. 838, pp. 133–145 (2020).https://doi.org/10.1007/978-3-030-22723-4_9

  22. Ren, H.S., Ren, X.Y., Xiong, H.P., et al.: Nano-diffusionbonding of Ti2AlNb to Ni-based superalloy. Mater. Charact. 155, 109813 (2019). https://doi.org/10.1016/j.matchar.2019.109813

  23. Samsonov, V.M., Sdobnyakov, N.Y., Bembel, A.G., Sokolov, D.N., Novozhilov, N.V.: Thermodynamic approach to the size dependence of the melting temperatures of films. Bull. Russ. Acad. Sci.: Phys. 78(8), 733–736 (2014). https://doi.org/10.3103/S1062873814080310

  24. Shirzadi, A., Wallach, E.: New method to diffusion bond superalloys. Sci. Technol. Weld. Joining 9(1), 37–40 (2004). https://doi.org/10.1179/136217104225017125

  25. Wu, X., Sun, Y.: Stable structures and potential energy surface of the metallicclusters: Ni, Cu, Ag, Au, Pd, and Pt. J. Nanopart. Res. 19, 201 (2017). https://doi.org/10.1007/s11051-017-3907-6

    Article  Google Scholar 

  26. Yuldasheva, A.R., Nugaeva, N.M.: Magnetoelectric interaction at the interface in thesuperlattices of multiferroic: Monte Carlo study of the phase transitions. Lett. Mater. 9(3), 354–359 (2019). https://doi.org/10.22226/2410-3535-2019-3-354-359

    Article  Google Scholar 

  27. Zakharov, P.B., Markidonov, A.V., Starostenkov, M.D., et al.: Effect of shock post-cascade waves on the interface boundary of bimetals Ni-Al, Ni-Fe. Basic Probl. Mater. Sci. 13(1), 77–83 (2016) (in Russian)

    Google Scholar 

  28. Zaporozhets, T.V., Gusak, A. M., Podolyan, O. M.: Evolution of pores in nanoshells- a competition of direct and inverse Kirkendall effects, Frenkel and Gibbs–Thomson effects: the phenomenological description and computer simulation. Prog. Phys. Metals 13(1), 1–70 (2012) (in Russian). https://doi.org/10.15407/ufm.13.01.001

  29. Zhang, Z., Chen, C., Liu, G., et al.: Enhancement of bonding strength in Ag sinter joining on Au surface finished substrate by increasing Au grain-size. Appl. Surf. Sci. 485, 468–475 (2019). https://doi.org/10.1016/j.apsusc.2019.04.228

    Article  Google Scholar 

  30. Zolnikov, K.P., Kryzhevich, D.S., Korchuganov, A.V.: Atomic mechanisms of highspeedmigration of symmetric tilt grain boundaries in nanocrystalline Ni. Lett. Mater. 9(2), 197–201 (2019). https://doi.org/10.22226/2410-3535-2019-2-197-201

    Article  Google Scholar 

  31. Zorya, I.V., Poletaev, G.M., Rakitin, R.Y., Ilyina, M.A., Starostenkov, M.D.: Interactionof impurity atoms of light elements with self-interstitials in fcc metals. Lett. Mater. 9(2), 207–211 (2019). https://doi.org/10.22226/2410-3535-2019-2-207-211

    Article  Google Scholar 

Download references

Acknowledgements

This work was partially funded by Russian Federation of Basic Research, project number 20-37-70007, by the Ministry of Science and Higher Education of the Russian Federation in the framework of the State Program in the Field of the Research Activity, project number 0817-2020-0007. Stefka Fidanova was supported by the Bulgarian NSF under the grant DFNI-DN 12/5 and by the Grant No BG05M2OP001-1.001-0003, financed by the Science and Education for Smart Growth Operational Program and co-financed by the European Union through the European structural and Investment funds. LeoneedKirilov and Rossen Mikhov were supported by the National Scientific Program “Information and Communication Technologies for a Single Digital Market in Science, Education and Security (ICTinSES)”, Ministry of Education and Science—Bulgaria, and by the Grant No BG05M2OP001-1.001-0003, financed by the Science and Education for Smart Growth Operational Program and co-financed by the European Union through the European structural and Investment funds.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Myasnichenko, V., Mikhov, R., Kirilov, L., Sdobnykov, N., Sokolov, D., Fidanova, S. (2022). Simulation of Diffusion Processes in Bimetallic Nanofilms. In: Fidanova, S. (eds) Recent Advances in Computational Optimization. WCO 2020. Studies in Computational Intelligence, vol 986. Springer, Cham. https://doi.org/10.1007/978-3-030-82397-9_11

Download citation

Publish with us

Policies and ethics