Skip to main content

On the Problem of Bimetallic Nanostructures Optimization: An Extended Two-Stage Monte Carlo Approach

  • Chapter
  • First Online:
Recent Advances in Computational Optimization (WCO 2020)

Part of the book series: Studies in Computational Intelligence ((SCI,volume 986))

Included in the following conference series:

Abstract

In this paper we present an extended version of the two-stage lattice Monte Carlo approach for optimization of bimetallic nanoalloys proposed in (Mikhov R., Myasnichenko V., Kirilov L., Sdobnyakov N., Matrenin P., Sokolov D., Fidanova S. A Two-Stage Monte Carlo Approach for Optimization of Bimetallic Nanostructures. In: Proceedings of the Federated Conference on Computer Science and Information Systems (FedCSIS), September 6–9, 2020. Sofia, Bulgaria, 285–288 (2020)). The two stages consist of simulated annealing on a larger lattice, followed by simulated diffusion. Both constituent algorithms are fairly similar in structure, but their combination was found to give significantly better solutions than simulated annealing alone. We test the proposed approach on a few examples and discuss how to tune the parameters of the algorithms so that they work together optimally.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ali, S., Myasnichenko, V.S., Neyts, E.C.: Size-dependent strain and surface energies of gold nanoclusters. Phys. Chem. Chem. Phys. 18(2), 792–800 (2016)

    Article  Google Scholar 

  2. Babicheva, R.I., Semenov, A.S., Dmitriev, S.V., Zhou, K.: Effect of grain boundary segregations on martensitic transformation temperatures in NiTi bi-crystals. Lett. Mater. 9(2), 162–167 (2019)

    Article  Google Scholar 

  3. Calvo, F.: Solid-solution precursor to melting in onion-ring Pd-Pt nanoclusters: a case of second-order-like phase change? Faraday Discuss. 138, 75–88 (2008)

    Article  Google Scholar 

  4. Calvo, F., Schebarchov, D., Wales, D.J.: Grand and semigrand canonical basin-hopping. J. Chem. Theory Comput. 12(2), 902–909 (2015)

    Article  Google Scholar 

  5. Chen, C., Zuo, Y., Ye, W., et al.: Critical review of machine learning of energy materials. Adv. Energy Mater. 10(8), 1903242-1–1903242-36 (2020)

    Google Scholar 

  6. Cleri, F., Rosato, V.: Tight-binding potentials for transition metals and alloys. Phys. Rev. B 48(1), 22–33 (1993)

    Article  Google Scholar 

  7. Davis, J., Johnston, R., Rubinovich, L., Polak, M.: Comparative modelling of chemical ordering in palladium-iridium nanoalloys. J. Chem. Phys. 141, 224307-1–224307-7 (2014)

    Google Scholar 

  8. Doye, J.P.K.: Physical perspectives on the global optimization of atomic clusters. In: Pintér, J.D. (ed.) Global Optimization. Nonconvex Optimization and Its Applications, vol. 85. Springer, Boston, MA, pp. 103–139 (2006)

    Google Scholar 

  9. Ferrando, R., Fortunelli, A., Johnston, R.: Searching for the optimum structures of alloy nanoclusters. Phys. Chem. Chem. Phys. 10, 640–649 (2008)

    Article  Google Scholar 

  10. Gelfand, S.B., Mitter, S.K.: Metropolis-type annealing algorithms for global optimization in {R}^d. SIAM J. Control. Optim. 31(1), 111–131 (1993)

    Article  MathSciNet  Google Scholar 

  11. Hodak, J.H., Henglein, A., Giersig, M., Hartland, G.V.: Laser-induced inter-diffusion in AuAg core-shell nanoparticles. J. Phys. Chem. B 104(49), 11708–11718 (2000)

    Article  Google Scholar 

  12. Jahangiri, M., Bajgholi, A., Fallah, A., Khodabandeh, A.: Effect of annealing method and applied stress on aging behavior of copper-aluminum bimetals. J. Alloy. Compd. 816, 152676 (2019)

    Google Scholar 

  13. Julin, J., Napari, I., Vehkamäki, H.: Comparative study on methodology in molecular dynamics simulation of nucleation. J. Chem. Phys. 126(22), 224517-1–224517-8 (2007)

    Google Scholar 

  14. Kim, H.G., Choi, S.K., Lee, H.M.: New algorithm in the basin hopping Monte Carlo to find the global minimum structure of unary and binary metallic nanoclusters. J. Chem. Phys. 128(14) 144702-1–144702-4 (2008)

    Google Scholar 

  15. Korznikova, E.A., Sharapov, E.A., Khalikov, A.R., Dmitriev, S.V.: Simulation of the binary alloy ordering kinetics during diffusion bonding. Mater. Technol. Des. 1(1), 58–64 (2019). (in Russian)

    Google Scholar 

  16. Kovács, G., Kozlov, S.M., Neyman, K.M.: Versatile optimization of chemical ordering in bimetallic nanoparticles. J. Phys. Chem. C 121(20), 10803–10808 (2017)

    Article  Google Scholar 

  17. Li, J.H., Dai, X.D., Liang, S.H., et al.: Interatomic potentials of the binary transition metal systems and some applications in materials physics. Phys. Rep. 455(1–3), 1–134 (2008)

    Article  Google Scholar 

  18. Li, X.-Y., Zhu, B., Qi, R., Gao, Y.: Real-time simulation of nonequilibrium nanocrystal transformations. Adv. Theory Simul. 2(1), 1800127-1–1800127-8 (2018)

    Google Scholar 

  19. Makarov, S.V., Olimov, M.G., Plotnikov, V.A., Hlebutina, S.V., Yakovleva, O.S.: Formation of a diffusion zone at the interface of nickel/aluminum bimetal. News of Altai State University 99(1), 29–33 (2018). (in Russian)

    Google Scholar 

  20. Michaelian, K., Rendón, N., Garzón, I.L.: Structure and energetics of Ni, Ag, and Au nanoclusters. Phys. Rev. B 60(3), 2000–2010 (1999)

    Article  Google Scholar 

  21. Mikhov, R., Myasnichenko, V., Kirilov, L., Sdobnyakov, N., Matrenin, P., Sokolov, D., Fidanova, S.: A two-stage Monte Carlo approach for optimization of bimetallic nanostructures. In: Proceedings of the Federated Conference on Computer Science and Information Systems (FedCSIS). Sofia, Bulgaria, pp. 285–288 (2020), 6–9 Sept 2020

    Google Scholar 

  22. Mikhov, R., Myasnichenko, V., Fidanova, S., Kirilov, L., Sdobnyakov, N.: Influence of the temperature on simulated annealing method for metal nanoparticle structures optimization. In: Advanced Computing in Industrial Mathematics: 13th Annual Meeting of the Bulgarian Section of SIAM. Sofia, Bulgaria, Springer, in press, 18–20 Dec 2018

    Google Scholar 

  23. Myasnichenko, V.S., Starostenkov, M.D.: Formation of fivefold axes in the FCC-metal nanoclusters. Appl. Surf. Sci. 260, 51–53 (2012)

    Article  Google Scholar 

  24. Myasnichenko, V., Sdobnyakov, N., Kirilov, L., Mikhov, R., Fidanova, S.: Structural instability of gold and bimetallic nanowires using Monte Carlo simulation. In: Recent Advances in Computational Optimization: Results of the Workshop on Computational Optimization and Numerical Search and Optimization 2018. Studies of Computational Intelligence, vol. 902, pp. 133–145. Springer, Berlin (2020)

    Google Scholar 

  25. Myasnichenko, V., Mikhov, R., Kirilov, L., Sdobnykov, N., Sokolov, D., Fidanova, S.: Simulation of diffusion processes in bimetallic nanofilms. In: Recent Advances in Computational Optimization: Results of Workshop on Computational Optimization WCO20, Studies of computational intelligence. Springer, (accepted)

    Google Scholar 

  26. Panizon, E., Olmos-Asar, J., Peressi, M., Ferrando, R.: The study of the structure and thermodynamics of CuNi nanoalloys using a new DFT-fitted atomistic potential. Phys. Chem. Chem. Phys. 17, 28068–28075 (2015)

    Article  Google Scholar 

  27. Parsina, I., DiPaola, C., Baletto, F.: A novel structural motif for free CoPt nanoalloys. Nanoscale 4, 1160–1166 (2012)

    Article  Google Scholar 

  28. Paz-Borbon, L., Mortimer-Jones, T., Johnston, R., Posada-Amarillas, A., et al.: Structures and energetics of 98 atom Pd-Pt nanoalloys: potential stability of the Leary tetrahedron for bimetallic nanoparticles. Phys. Chem. Chem. Phys. 9, 5202–5208 (2007)

    Google Scholar 

  29. Paszkowicz, W.: Genetic algorithms, a nature-inspired tool: a survey of applications in materials science and related fields: Part II. Mater. Manuf. Process. 28, 708–725 (2013)

    Article  Google Scholar 

  30. Polukhin, V.A., Vatolin, N.A.: Simulation of Amorphous Metals, p. 285. Nauka, Moscow (1985)

    Google Scholar 

  31. Romero, D., Barrón, C., Gómez, S.: The optimal geometry of Lennard-Jones clusters: 148–309. Comput. Phys. Commun. 123, 87–96 (1999)

    Article  Google Scholar 

  32. Rossi, G., Ferrando, R.: Combining shape-changing with exchange moves in the optimization of nanoalloys. Comput. Theor. Chem. 1107, 66–73 (2017)

    Article  Google Scholar 

  33. Ren, H.S., Ren, X.Y., Xiong, H.P., et al.: Nano-diffusion bonding of Ti2AlNb to Ni-based superalloy. Mater. Charact. 155, 109813 (2019)

    Google Scholar 

  34. Samsonov, V.M., Sdobnyakov, N.Yu., Bembel, A.G., Sokolov, D.N., Novozhilov, N.V.: Size dependence of the melting temperature of metallic films: two possible scenarios. J. Nano-Electron. Phys. 5(4), 04005-1–04005-3 (2013)

    Google Scholar 

  35. Samsonov, V.M., Sdobnyakov, N.Y., Bembel, A.G., Sokolov, D.N., Novozhilov, N.V.: Thermodynamic approach to the size dependence of the melting temperatures of films. Bull. Russ. Acad. Sci.: Phys. 78(8), 733–736 (2014)

    Google Scholar 

  36. Schebarchov, D., Wales, D.: A new paradigm for structure prediction in multicomponent systems. J. Chem. Phys. 139(22), 221101 (2013)

    Google Scholar 

  37. Schebarchov, D., Wales, D.: Quasi-combinatorial energy landscapes for nanoalloy structure optimization. Phys. Chem. Chem. Phys. 17, 28331–28338 (2015)

    Article  Google Scholar 

  38. Shao, G.-F., Zhu, M., Shangguan, Y.L., et al.: Structural optimization of Au–Pd bimetallic nanoparticles with improved particle swarm optimization method. Chin. Phys. B 26(6), 063601 (2017)

    Google Scholar 

  39. Shayeghi, A., Götz, D., Davis, J.B.A., Schäfer, R., Johnston, R.L.: Pool-BCGA: a parallelised generation-free genetic algorithm for the ab initio global optimisation of nanoalloy clusters. Phys. Chem. Chem. Phys. 17, 2104–2112 (2015)

    Article  Google Scholar 

  40. Toai, T.J., Rossi, G., Ferrando, R.: Global optimisation and growth simulation of AuCu clusters. Faraday Discuss. 138, 49–58 (2008)

    Article  Google Scholar 

  41. Verlet, L.: Computer «experiments» on classical fluids. I: thermodynamical properties of Lennard-Jones molecules. Phys. Rev. 159(1), 98–103 (1967)

    Google Scholar 

  42. Verlet, L.: Computer «experiments» on classical fluids II Equilibrium correlation functions. Phys. Rev. 165(1), 201–204 (1968)

    Article  Google Scholar 

  43. Wales, D.J., Doye, J.P.K.: Global optimization by basin-hopping and the lowest energy structures of Lennard-Jones clusters containing up to 110 atoms. J. Phys. Chem. A 101(28), 5111–5116 (1997)

    Article  Google Scholar 

  44. Wu, X., Sun, Y.: Stable structures and potential energy surface of the metallic clusters: Ni, Cu, Ag, Au, Pd, and Pt. J. Nanopart. Res. 19, 201 (2017)

    Article  Google Scholar 

  45. Zaporozhets, T.V., Gusak, A.M., Podolyan, O.M.: Evolution of pores in nanoshells—a competition of direct and inverse Kirkendall effects, Frenkel and Gibbs–Thomson effects: the phenomenological description and computer simulation. Prog. Phys. Metals 13(1), 1–70 (2012) (in Russian)

    Google Scholar 

  46. Zhang, Z., Chen, C., Liu, G., et al.: Enhancement of bonding strength in Ag sinter joining on Au surface finished substrate by increasing Au grain-size. Appl. Surf. Sci. 485, 468–475 (2019)

    Article  Google Scholar 

Download references

Acknowledgements

This work was partially funded by Russian Federation of Basic Research, project number 20-37-70007, by the Ministry of Science and Higher Education of the Russian Federation in the framework of the State Program in the Field of the Research Activity, project number 0817-2020-0007. Stefka Fidanova was supported by the Bulgarian NSF under the grant DFNI-DN 12/5 and by the Grant No BG05M2OP001-1.001-0003, financed by the Science and Education for Smart Growth Operational Program and co-financed by the European Union through the European structural and Investment funds. Leoneed Kirilov and Rossen Mikhov were supported by the National Scientific Program “Information and Communication Technologies for a Single Digital Market in Science, Education and Security (ICTinSES)”, Ministry of Education and Science – Bulgaria, and by the Grant No BG05M2OP001-1.001-0003, financed by the Science and Education for Smart Growth Operational Program and co-financed by the European Union through the European structural and Investment funds.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mikhov, R. et al. (2022). On the Problem of Bimetallic Nanostructures Optimization: An Extended Two-Stage Monte Carlo Approach. In: Fidanova, S. (eds) Recent Advances in Computational Optimization. WCO 2020. Studies in Computational Intelligence, vol 986. Springer, Cham. https://doi.org/10.1007/978-3-030-82397-9_12

Download citation

Publish with us

Policies and ethics