Skip to main content

Sensitivity Study of a Large-Scale Air Pollution Model by Using Optimized Latin Hyprecube Sampling

  • Chapter
  • First Online:
Recent Advances in Computational Optimization (WCO 2020)

Part of the book series: Studies in Computational Intelligence ((SCI,volume 986))

Included in the following conference series:

Abstract

In this work a systematic procedure for multidimensional sensitivity analysis in the area of air pollution modeling by an optimized latin hypercube sampling has been done. The Unified Danish Eulerian Model (UNI-DEM) is used in our investigation, because this is one of the most advanced large-scale mathematical models that describes adequately all physical and chemical processes. We study the sensitivity of concentration variations of some of the most dangerous air pollutants with respect to the anthropogenic emissions levels and with respect to some chemical reactions rates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Csomós, P., Faragó, I., Havasi, A.: Weighted sequential splittings and their analysis. Comp. Math. Appl. 50, 1017–1031 (2005)

    Article  MathSciNet  Google Scholar 

  2. Cukier, R., Fortuin, C., Shuler, K., Petschek, A., Schaibly, J.: Study of the sensitivity of coupled reaction systems to uncertainties in rate coefficients. I. Theory. J. Chem. Phys. 59, 3873–3878 (1973)

    Google Scholar 

  3. Dimitriu, G.: Global sensitivity analysis for a chronic myelogenous leukemia model. In: Proceedings of the 9th International Conference NMA’2018, Borovets, Bulgaria, August 20–24, 2018, LNCS 11189. Springer (2019). https://doi.org/10.1007/978-3-030-10692-8_42

  4. Dimov, I.T., Georgieva, R.: Monte Carlo method for numerical integration based on sobol’ sequences. In: Dimov, I., Dimova, S., Kolkovska, N. (eds.) Numerical Methods and Applications, LNCS 6046, pp. 50–59. Springer (2011)

    Google Scholar 

  5. Dimov, I.T., Georgieva, R.: Multidimensional sensitivity analysis of large-scale mathematical models. In: Iliev, O.P., et al. (eds.), Numerical Solution of Partial Differential Equations: Theory, Algorithms, and Their Applications, Springer Proceedings in Mathematics & Statistics 45, pp. 137–156. Springer Science+Business Media, New York (2013)

    Google Scholar 

  6. Dimov, I.T., Georgieva, R., Ostromsky, T., Zlatev, Z.: Variance-based sensitivity analysis of the unified danish eulerian model according to variations of chemical rates. In: Dimov, I., Faragó, I., Vulkov, L., (eds.) Proceedings of the NAA 2012, LNCS 8236, pp. 247–254. Springer (2013)

    Google Scholar 

  7. Dimov, I.T., Georgieva, R., Ostromsky, T., Zlatev, Z.: Sensitivity studies of pollutant concentrations calculated by UNI-DEM with respect to the input emissions. Cent. Eur. J. Math., “Numerical Methods Large Scale Sci. Comput.” 11(8), 1531–1545 (2013)

    Google Scholar 

  8. Dimov, I.T., Georgieva, R., Ostromsky, T., Zlatev, Z.: Advanced algorithms for multidimensional sensitivity studies of large-scale air pollution models based on sobol sequences. Spec. Issue Comput. Math. Appl. 65(3); “Efficient Numerical Methods for Scientific Applications”, pp. 338–351. Elsevier (2013)

    Google Scholar 

  9. Dimov, I., Georgieva, R., Ostromsky, T.: Monte Carlo sensitivity analysis of an Eulerian large-scale air pollution model. Reliab. Eng. Syst. Saf. 107, 23–28 (2012). Elsevier

    Google Scholar 

  10. Dimov, I., Georgieva, R.: Monte Carlo algorithms for evaluating Sobol’ sensitivity indices. Math. Comput. Simul. 81(3), 506–514 (2010)

    Article  MathSciNet  Google Scholar 

  11. Dimov, I., Karaivanova, A.: Error analysis of an adaptive Monte Carlo method for numerical integration. Math. Comput. Simul. 47, 201–213 (1998)

    Article  MathSciNet  Google Scholar 

  12. Dimov, I., Karaivanova, A., Georgieva, R., Ivanovska, S.: Parallel Importance Separation and Adaptive Monte Carlo Algorithms for Multiple Integrals. Springer Lecture Notes in Computer Science, pp. 99–107. Springer, Berlin, Heidelberg, New York (2003)

    MATH  Google Scholar 

  13. Ferretti, F., Saltelli A., Tarantola, S.: Trends in sensitivity analysis practice in the last decade. J., Sci. Total. Environ. Special issue on Human and Biota Exposure 568, 666–670 (2016). Elsevier

    Google Scholar 

  14. Georgiev, I.R., Zheleva, I., Filipova, M.: Numerical study of the influence of two-burner heating upon the heat transfer during pyrolysis process used for end-of-life tires (EOLT) treatment. In: AIP Conference Proceedings, vol. 2164

    Google Scholar 

  15. Gocheva-Ilieva, Snezhana G., Ivanov, Atanas V., Livieris, Ioannis E.: High performance machine learning models of large scale air pollution data in urban area. Cybern. Inf. Technol. 20(6), 49–60 (2020)

    Google Scholar 

  16. Gocheva-Ilieva, S.G., Ivanov, A.V., Voynikova, D.S., et al.: Time series analysis and forecasting for air pollution in small urban area: an SARIMA and factor analysis approach. Stoch Environ Res Risk Assess 28, 1045–1060 (2014)

    Article  Google Scholar 

  17. Gocheva-Ilieva, S.G., Voynikova, D.S., Stoimenova, M.P., Ivanov, A.V., Iliev, I.P.: Regression trees modeling of time series for air pollution analysis and forecasting. Neural Comput. Appl. 31(12), 9023–9039 (2019)

    Article  Google Scholar 

  18. Hesstvedt, E., Hov, Ø., Isaksen, I.A.: Quasi-steady-state approximations in air pollution modeling: comparison of two numerical schemes for oxidant prediction. Int. J. Chem. Kinet. 10, 971–994 (1978)

    Article  Google Scholar 

  19. Hamdad, H., Pézerat, C., Gauvreau, B., Locqueteau, C., Denoual, Y.: Sensitivity analysis and propagation of uncertainty for the simulation of vehicle pass-by noise. Appl. Acoust. 149, 85-98 (2019) Elsevier. https://doi.org/10.1016/j.apacoust.2019.01.026

  20. Homma, T., Saltelli, A.: Importance measures in global sensitivity analysis of nonlinear models. Reliab. Eng. Syst. Saf. 52, 1–17 (1996)

    Article  Google Scholar 

  21. Jarosz, W.: Efficient Monte Carlo methods for light transport in scattering media, Ph.D. dissertation, UCSD (2008)

    Google Scholar 

  22. Kroese, D.P., Taimre, T., Botev, Z.: Handbook of Monte Carlo Methods. Wiley Series in Probability and Statistics (2011)

    Google Scholar 

  23. McKay, M.D., Beckman, R.J., Conover, W.J.: A comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics 21(2), 239–45 (1979)

    MathSciNet  MATH  Google Scholar 

  24. Minasny, B., McBratney, B.: A conditioned Latin hypercube method for sampling in the presence of ancillary information. J. Comput. Geosci. Arch. 32(9), 1378–1388 (2006)

    Article  Google Scholar 

  25. Minasny, B., McBratney, B.: Conditioned Latin hypercube sampling for calibrating soil sensor data to soil properties. In: Chapter: Proximal Soil Sensing, Progress in Soil Science, pp. 111–119 (2010)

    Google Scholar 

  26. Ökten, G., Göncüb, A.: Generating low-discrepancy sequences from the normal distribution: Box-Muller or inverse transform? Math. Comput. Model. 53, 1268–1281 (2011)

    Article  MathSciNet  Google Scholar 

  27. Ostromsky, T., Dimov, I.T., Georgieva, R., Zlatev, Z.: Parallel computation of sensitivity analysis data for the Danish Eulerian model. In: Proceedings of the 8th International Conference LSSC’11, LNCS-7116, pp. 301–309. Springer (2012)

    Google Scholar 

  28. Ostromsky, T., Dimov, I.T., Georgieva, R., Zlatev, Z.: Air pollution modelling, sensitivity analysis and parallel implementation. Int. J. Environ. Pollut. 46(1/2), 83–96 (2011)

    Google Scholar 

  29. Ostromsky, T., Dimov, I.T., Marinov, P., Georgieva, R., Zlatev, Z.: Advanced sensitivity analysis of the Danish Eulerian Model in parallel and grid environment. In: Proceedings of the 3rd International Conference AMiTaNS’11, AIP Conference Proceedings, vol. 1404, pp. 225–232 (2011)

    Google Scholar 

  30. Ostromsky, T., Todorov, V., Dimov, I., Zlatev, Z.: Sensitivity studies of an air pollution model by using efficient stochastic algorithms for multidimensional numerical integration. In: Dimov, I., Fidanova, S., (eds.) Advances in High Performance Computing. HPC 2019. Studies in Computational Intelligence, vol. 902. Springer, Cham (2019)

    Google Scholar 

  31. Saltelli, A.: Making best use of model valuations to compute sensitivity indices. Comput. Phys. Commun. 145, 280–297 (2002)

    Article  Google Scholar 

  32. Saltelli, A., Chan, K., Scott, M.: Sensitivity Analysis. Probability and Statistics series, Wiley (2000)

    Google Scholar 

  33. Saltelli, A., Tarantola, S., Campolongo, F., Ratto, M.: Sensitivity Analysis in Practice: A Guide to Assessing Scientific Models. Halsted Press, New York (2004)

    MATH  Google Scholar 

  34. Poryazov, S., Saranova, E., Ganchev, I.: Conceptual and Analytical Models for Predicting the Quality of Service of Overall Telecommunication Systems. Autonomous Control for a Reliable Internet of Services, pp. 151–181. Springer, Cham (2018)

    Google Scholar 

  35. Sobol’, I.M.: Sensitivity estimates for nonlinear mathematical models. Math. Model. Comput. Exp. 1, 407–414 (1993)

    MathSciNet  MATH  Google Scholar 

  36. Sobol’, I.M.: Sensitivity estimates for nonlinear mathematical models. Matem. Model. 2(1), 112–118 (1990)

    MATH  Google Scholar 

  37. Sobol’, I.M.: Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates. Math. Comput. Simul. 55(1–3), 271–280 (2001)

    Article  MathSciNet  Google Scholar 

  38. Sobol’, I.M.: Theorem and examples on high dimensional model representation. Reliab. Eng. Syst. Saf. 79, 187–193 (2003)

    Article  Google Scholar 

  39. Sobol, I.M., Myshetskaya, E.: Monte Carlo estimators for small sensitivity indices. Monte Carlo Methods Appl. 13(5–6), 455–465 (2007)

    MathSciNet  MATH  Google Scholar 

  40. Sobol, I.M., Tarantola, S., Gatelli, D., Kucherenko, S., Mauntz, W.: Estimating the approximation error when fixing unessential factors in global sensitivity analysis. Reliab. Eng. Syst. Saf. 92, 957–960 (2007)

    Article  Google Scholar 

  41. Zheleva, I., Georgiev, I., Filipova, M., Menseidov, D.: Mathematical modeling of the heat transfer during pyrolysis process used for end-of-life tires treatment. In: AIP Conference Proceedings, vol. 1895, no. 1, p. 030008. AIP Publishing LLC

    Google Scholar 

  42. Zlatev, Z.: Computer Treatment of Large Air Pollution Models. KLUWER Academic Publishers, Dorsrecht-Boston-London (1995)

    Book  Google Scholar 

  43. Zlatev, Z., Dimov, I.T.: Computational and Numerical Challenges in Environmental Modelling. Elsevier, Amsterdam (2006)

    MATH  Google Scholar 

  44. Zlatev, Z., Dimov, I., Georgiev, K.: Modeling the long-range transport of air pollutants. IEEE Comput. Sci. Eng. 1(3), 45–52 (1994)

    Article  Google Scholar 

  45. Zlatev, Z., Dimov, I., Georgiev, K.: Three-dimensional version of the Danish Eulerian model. Zeitschrift für Angewandte Mathematik und Mechanik 76(S4), 473–476 (1996)

    MATH  Google Scholar 

Download references

Acknowledgements

Venelin Todorov is supported by the Bulgarian National Science Fund under Project KP-06-M32/2-17.12.2019 “Advanced Stochastic and Deterministic Approaches for Large-Scale Problems of Computational Mathematics” and by the National Scientific Program “Information and Communication Technologies for a Single Digital Market in Science, Education and Security (ICT in SES)”, contract No D01-205/23.11.2018, financed by the Ministry of Education and Science in Bulgaria. This work is supported by the Bulgarian National Science Fund under Project DN 12/5-2017 and Project KP-06-Russia/17 “New Highly Efficient Stochastic Simulation Methods and Applications” funded by National Science Fund—Bulgaria. Barcelona Supercompputing Centre (BSC) is kindly acknowledged too for granting us access and computer time on their most powerful supercomputer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Venelin Todorov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Todorov, V., Dimov, I., Ostromsky, T., Zlatev, Z., Georgieva, R., Poryazov, S. (2022). Sensitivity Study of a Large-Scale Air Pollution Model by Using Optimized Latin Hyprecube Sampling. In: Fidanova, S. (eds) Recent Advances in Computational Optimization. WCO 2020. Studies in Computational Intelligence, vol 986. Springer, Cham. https://doi.org/10.1007/978-3-030-82397-9_19

Download citation

Publish with us

Policies and ethics