Skip to main content

A Numerical Study on Optimal Monte Carlo Algorithm for Multidimensional Integrals

  • Chapter
  • First Online:
Recent Advances in Computational Optimization (WCO 2020)

Part of the book series: Studies in Computational Intelligence ((SCI,volume 986))

Included in the following conference series:

  • 292 Accesses

Abstract

In this work we analyze and compare the performance of an optimal stochastic approach for multidimensional integrals of smooth functions. The purpose of the present study is to compare the optimal Monte Carlo algorithm under consideration with the lattice rules based on the generalized Fibonacci numbers of the corresponding dimension and to discuss the advantages and disadvantages of each method. This is the first time this optimal stochastic approach has been compared with other stochastic approaches for mid and high dimensional integrals. The advantages and disadvantages of the stochastic approaches have been discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Antonov, I., Saleev, V.: An Economic Method of Computing \(LP_{\tau }\)-sequences, USSR Comput. Math. Phy. 19, 252–256 (1979)

    MATH  Google Scholar 

  2. Atanassov, E., Dimov, I.T.: A new optimal monte carlo method for calculating integrals of smooth functions. Journal of Monte Carlo Methods and Applications 5(2), 149–167 (1999)

    MathSciNet  MATH  Google Scholar 

  3. Berntsen, J., Espelid, T.O., Genz, A.: An adaptive algorithm for the approximate calculation of multiple integrals, ACM Trans. Math. Softw. 17, 437–451 (1991)

    Article  Google Scholar 

  4. Bratley, P., Fox, B.: Algorithm 659: Implementing Sobol’s Quasirandom Sequence Generator. ACM Transactions on Mathematical Software 14(1), 88–100 (1988)

    Article  MathSciNet  Google Scholar 

  5. Cull, P., Holloway, J.L.: Computing Fibonacci numbers quickly. Inf. Process. Lett. 32(3), 143–149 (1989)

    Article  MathSciNet  Google Scholar 

  6. Davis P.J. and Rabinowitz P. (1984) Methods of Numerical Integration. Academic Press, London, 2nd edition

    Google Scholar 

  7. Dimov I. (2008) Monte Carlo Methods for Applied Scientists, New Jersey, London, Singapore, World Scientific, 291 p., ISBN-10 981-02-2329-3

    Google Scholar 

  8. Dimov, I.T., Tonev, O.: Monte carlo algorithms: performance analysis for some computer architectures. J. of Computational and Applied Mathematics 48, 253–277 (1993)

    Article  MathSciNet  Google Scholar 

  9. Dupach, V.: Stochasticke pocetni metody. Cas. pro pest. mat. 81(1), 55–68 (1956)

    Google Scholar 

  10. Ermakov, S.M.: Monte Carlo Methods and Mixed Problems. Nauka, Moscow (1985)

    Google Scholar 

  11. Filipova, M., I. R. Georgiev, and I. Zheleva. “Numerical study of the influence of the heater position upon the heat transfer during pyrolysis process used for end-of-life tires treatment.” AIP Conference Proceedings. Vol. 2025. No. 1. AIP Publishing LLC, 2018

    Google Scholar 

  12. Georgiev, I., et al. “Comparison of heuristic algorithms for solving a specific model of transportation problem.” AIP Conference Proceedings. Vol. 2302. No. 1. AIP Publishing LLC, 2020

    Google Scholar 

  13. Georgieva, R.: PhD Thesis: Computational complexity of Monte Carlo algorithms for multidimensional integrals and integral equations, Sofia, 2003

    Google Scholar 

  14. Metropolis, N., Ulam, S.: The Monte Carlo Method. J. of Amer. Statistical Assoc. 44(247), 335–341 (1949)

    Article  Google Scholar 

  15. Minasny, B., McBratneyB, B.: A conditioned Latin hypercube method for sampling in the presence of ancillary information. Journal Computers and Geosciences archive 32(9), 1378–1388 (2006)

    Article  Google Scholar 

  16. Nikolskii, S.: Quadrature Formulas. Nauka, Moscow (1988)

    Google Scholar 

  17. Sellier, J.M., Dimov, I.: On a full Monte Carlo approach to quantum mechanics. Physica A 463, 45–62 (2016)

    Article  MathSciNet  Google Scholar 

  18. Sloan, I.H., Kachoyan, P.J.: Lattice methods for multiple integration: Theory, error analysis and examples, SIAM. J. Numer. Anal. 24, 116–128 (1987)

    Article  MathSciNet  Google Scholar 

  19. Sloan, I.H., Joe, S.: Lattice Methods for Multiple Integration. Oxford University Press, Oxford (1994)

    Google Scholar 

  20. Sobol, I.: Numerical methods Monte Carlo. Nauka, Moscow (1973)

    Google Scholar 

  21. Sobol, I.M.: “Distribution of points in a cube and approximate evaluation of integrals”. Zh. Vych.Mat.Mat. Fiz. 7: 784–802 (in Russian); U.S.S.R Comput. Maths. Math. Phys. 7, 86–112 (1967)

    Article  Google Scholar 

  22. I.M. Sobol, (1989) Quasi-Monte Carlo methods, in: Sendov, Bl., Dimov, I.T. (eds.) International Youth Workshop on Monte Carlo Methods and Parallel Algorithms, World Scientific, Singapore: 75–81

    Google Scholar 

  23. Wang Y., F.J. Hickernell (2002) An historical overview of lattice point sets

    Google Scholar 

Download references

Acknowledgements

Venelin Todorov is supported by the National Scientific Program “Information and Communication Technologies for a Single Digital Market in Science, Education and Security (ICT in SES)”, contract No DO1-205/23.11.2018, financed by the Ministry of Education and Science in Bulgaria and by the Bulgarian National Fund of Science under Project DN 12/5-2017 “Efficient Stochastic Methods and Algorithms for Large-Scale Computational Problems”. Stoyan Apostolov is supported by the Bulgarian National Science Fund under Young Scientists Project KP-06-M32/2 - 17.12.2019 “Advanced Stochastic and Deterministic Approaches for Large-Scale Problems of Computational Mathematics”. The work is also supported by Project KP-06-Russia/17 “New Highly Efficient Stochastic Simulation Methods and Applications” funded by National Science Fund - Bulgaria.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Venelin Todorov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Todorov, V., Apostolov, S., Dimov, I., Dimitrov, Y., Poryazov, S., Todorov, D. (2022). A Numerical Study on Optimal Monte Carlo Algorithm for Multidimensional Integrals. In: Fidanova, S. (eds) Recent Advances in Computational Optimization. WCO 2020. Studies in Computational Intelligence, vol 986. Springer, Cham. https://doi.org/10.1007/978-3-030-82397-9_24

Download citation

Publish with us

Policies and ethics