Skip to main content

Ant Colony Optimization Algorithm for Fuzzy Transport Modelling: InterCriteria Analysis

  • Chapter
  • First Online:
Recent Advances in Computational Optimization (WCO 2020)

Part of the book series: Studies in Computational Intelligence ((SCI,volume 986))

Included in the following conference series:

Abstract

Public transport plays an important role in our live. It is very important to have a reliable service. Up to 1000 km, trains and buses play the main role in the public transport. The number of the people and which kind of transport they prefer is important information for transport operators. In this paper is proposed algorithm for transport modeling and passenger flow, based on Ant Colony Optimization method. The problem is described as multi-objective optimization problem. There are two optimization purposes: minimal transportation time and minimal price. Some fuzzy element is included. When the price is in a predefined interval it is considered the same. Similar for the starting traveling time. The aim is to show how many passengers will prefer train and how many will prefer buses according their preferences, the price or the time. The InterCriteria Analysis (ICrA) is applied over numerical results obtained from ACO algorithm in order to estimate the algorithm performance. The ICrA results show that the proposed ACO algorithm performs very well.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. El Amaraoui, A., Mesghouni, A.K.: Train scheduling networks under time duration uncertainty. In: Proceedings of the 19th World Congress of the International Federation of Automatic Control, pp. 8762–8767 (2014)

    Google Scholar 

  2. Atanassov, K., Mavrov, D., Atanassova, V.: Intercriteria decision making: a new approach for multicriteria decision making, based on index matrices and intuitionistic fuzzy sets. Issues IFSs GNs 11, 1–8 (2014)

    Google Scholar 

  3. Atanassov, K.: On Intuitionistic Fuzzy Sets Theory. Springer, Berlin (2012)

    Book  Google Scholar 

  4. Atanassov, K., Atanassova, V., Gluhchev, G.: InterCriteria analysis: ideas and problems. Notes on Intuitionistic Fuzzy Sets 21(1), 81–88 (2015)

    MATH  Google Scholar 

  5. Atanassov, K.: Intuitionistic fuzzy sets, VII ITKR session, Sofia, 20–23 June 1983, reprinted. Int. J. Bioautomation 20(S1), S1–S6 (2016)

    Google Scholar 

  6. Atanassov, K.: On index matrices, Part 1: standard cases. Adv. Stud. Contemp. Math. 20(2), 291–302 (2010)

    MathSciNet  MATH  Google Scholar 

  7. Atanassov, K.: Review and new results on intuitionistic fuzzy sets, mathematical foundations of artificial intelligence seminar, Sofia, 1988, Preprint IM-MFAIS-1-88, Reprinted. Int. J. Bioautom. 20(S1), S7–S16 (2016)

    Google Scholar 

  8. Atanassov, K., Vassilev, P.: On the intuitionistic fuzzy sets of n-th type. In: Gaweda A., Kacprzyk J., Rutkowski L., Yen G. (eds.), Advances in data analysis with computational intelligence methods. Studies in Computational Intelligence, vol. 738, pp. 265–274. Springer, Cham (2008)

    Google Scholar 

  9. Atanassova, V., Mavrov, D., Doukovska, L., Atanassov, K.: Discussion on the Threshold Values in the InterCriteria Decision Making Approach, Notes on Intuitionistic Fuzzy Sets, vol. 20, No. 2, pp. 94–99 (2014)

    Google Scholar 

  10. Atanassova, V., Doukovska, L., Atanassov, K., Mavrov, D.: Intercriteria decision making approach to EU member states competitiveness analysis. In: Shishkov, B. (ed.), Proceedings of the International Symposium on Business Modeling and Software Design—BMSD’14, pp. 289–294 (2014)

    Google Scholar 

  11. Angelova, M., Roeva, O., Pencheva, T.: InterCriteria analysis of crossover and mutation rates relations in simple genetic algorithm. Proceedings of the Federated Conference on Computer Science and Information Systems 5, 419–424 (2015)

    Article  Google Scholar 

  12. Assad, A.A.: Models for rail transportation. Transp. Res. Part A Gen. 14(3), 205–220 (1980)

    Article  Google Scholar 

  13. Bonabeau, E., Dorigo, M., Theraulaz, G.: Swarm Intelligence: From Natural to Artificial Systems. Oxford University Press (1999)

    Google Scholar 

  14. Diaz-Parra, O., Ruiz-Vanoye, J.A., Loranca, B.B., Fuentes-Penna, A., Barrera-Camara, R.A.: A survey of transportation problems. J. Appl. Math. 2014, Article ID 848129, 17 pages (2014)

    Google Scholar 

  15. Dong, C.H., Xiong, Z.H., Shao, C.H., Zhang, H.: A spatial-temporal-based state space approach for freeway network traffic flow modelling and prediction. J. Transportmetrica A: Trans. Sci. 11(7), 574–560 (2015)

    Google Scholar 

  16. Dorigo, M., Stutzle, T.: Ant Colony Optimization. MIT Press (2004)

    Google Scholar 

  17. Ikonomov, N., Vassilev, P., Roeva, O.: ICrAData—software for intercriteria analysis. Int. J. Bioautom. 22(1), 1–10 (2018)

    Article  Google Scholar 

  18. Fidanova, S., Atanasov, K.: Generalized net model for the process of hibride ant colony optimization. Comptes Randus de l’Academie Bulgare des Sci. 62(3), 315–322 (2009)

    Google Scholar 

  19. Fidanova, S.: Metaheuristic Method for Transport Modelling and Optimization, Studies in Computational Intelligence, vol. 648, pp. 295–302. Springer (2016)

    Google Scholar 

  20. Hanseler, F.S., Molyneaux, N., Bierlaire, M., Stathopoulos, A.: Schedule-based estimation of pedestrian demand within a railway station. In: Proceedings of the Swiss Transportation Research Conference (STRC), 14–16 May 2014

    Google Scholar 

  21. Jin, J.G., Zhao, J., Lee, D.H.: A column generation based approach for the train network design optimization problem. J. Trans. Res. 50(1), 1–17 (2013)

    Google Scholar 

  22. Marinov, E., Vassilev, P., Atanassov, K.: On separability of intuitionistic fuzzy sets. In: Novel Developments in Uncertainty Representation and Processing, Advances in Intelligent Systems and Computing, vol. 401. Springer, Cham, pp. 111–123 (2106)

    Google Scholar 

  23. Mathur, V.K.: How well do we know pareto optimality? J. Econ. Educ. 22(2), 172–178 (1991)

    Article  Google Scholar 

  24. N. Molyneaux, F. Hanseler, M. Bierlaire, Modelling of train-induced pedestrian flows in rail-way stations. In: Proceedings of the Swiss Transportation Research Conference (STRC), 14–16 May 2014

    Google Scholar 

  25. Roeva, O., Fidanova, S., Paprzycki, M.: InterCriteria analysis of ACO and GA hybrid algorithms. Stud. Comput. Intell. 610, 107–126 (2016)

    MathSciNet  Google Scholar 

  26. Roeva, O., Fidanova, S., Vassilev, P., Gepner, P.: InterCriteria analysis of a model parameters identification using genetic algorithm. Proc. Fed. Conf. Comput. Sci. Inf. Syst. 5, 501–506 (2015)

    Google Scholar 

  27. Todinova, S., Mavrov, D., Krumova, S., Marinov, P., Atanassova, V., Atanassov, K., Taneva, S.G.: Blood plasma thermograms dataset analysis by means of intercriteria and correlation analyses for the case of colorectal cancer. Int. J. Bioautomation 20(1), 115–124 (2016)

    Google Scholar 

  28. Traneva, V., Atanassova V., Tranev, S.: Index matrices as a decision-making tool for job appointment. In: Nikolov, G. et al. (eds.), Springer Nature Switzerland AG, NMA 2018, vol. 11189, 1–9, 2019. LNCS (2018)

    Google Scholar 

  29. Vassilev, P., Todorova, L., Andonov, V.: An auxiliary technique for intercriteria analysis via a three dimensional index matrix. Notes on Intuitionistic Fuzzy Sets, vol. 21, No. 2, pp. 71–76 (2015)

    Google Scholar 

  30. Vassilev, P., Ribagin, S.: A note on intuitionistic fuzzy modal-like operators generated by power mean. In: Kacprzyk, J., Szmidt, E., Zadrożny, S., Atanassov, K., Krawczak, M. (eds.), Advances in Fuzzy Logic and Technology 2017. EUSFLAT 2017, IWIFSGN 2017. Advances in Intelligent Systems and Computing, vol. 643, pp. 470–475. Springer, Cham (2018)

    Google Scholar 

  31. Vassilev, P.: A Note on New Distances between Intuitionistic Fuzzy Sets, Notes on Intuitionistic Fuzzy Sets, vol. 21, No. 5, pp. 11–15 (2015)

    Google Scholar 

  32. Woroniuk, C., Marinov, M.: Simulation modelling to analyze the current level of utilization of sections along rail rout. J. Trans. Lit. 7(2), 235–252 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

Work presented here is partially supported by the National Scientific Fund of Bulgaria under grant DFNI DN12/5 “Efficient Stochastic Methods and Algorithms for Large-Scale Problems”, Grant No BG05M2OP001-1.001-0003, financed by the Science and Education for Smart Growth Operational Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefka Fidanova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Fidanova, S., Roeva, O., Ganzha, M. (2022). Ant Colony Optimization Algorithm for Fuzzy Transport Modelling: InterCriteria Analysis. In: Fidanova, S. (eds) Recent Advances in Computational Optimization. WCO 2020. Studies in Computational Intelligence, vol 986. Springer, Cham. https://doi.org/10.1007/978-3-030-82397-9_6

Download citation

Publish with us

Policies and ethics