Abstract
As more and more business processes are based on IT services the high availability of these processes is dependent on the IT-Support. Thus, making the IT-Support a critical success factor of companies. This paper presents how this department can be supported by providing the staff with domain-specific and high-quality solution material to help employees faster when errors occur. The solution material is based on previously solved tickets because these contain precise domain-specific solutions narrowed down to e.g., specific versions and configurations of hard-/software used in the company. To retrieve the solution material ontologies are used that contain the domain-specific vocabulary needed. Because not all previously solved tickets contain high-quality solution material that helps the staff to fix issues the de-signed IT-Support system separates low- from high-quality solution material. This paper presents (a) theory- and practical-motivated design requirements that describe the need for automatically retrieved solution material, (b) develops two major design principles to retrieve domain-specific and high-quality solution material, and (c) evaluates the instantiations of them as a prototype with organic real-world data. The results show that previously solved tickets of a company can be pre-processed and retrieved to IT-Support staff based on their current queries.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Alonso-Abad, J.M., López-Nozal, C., Maudes-Raedo, J.M., Marticorena-Sánchez, R.: Label prediction on issue tracking systems using text mining. Prog. Artif. Intell. 8(3), 325–342 (2019). https://doi.org/10.1007/s13748-019-00182-2
Baeza-Yates, R., Ribeiro-Neto, B.: Modern Information Retrieval. ACM press, New York (1999)
Brooke, J.: SUS: A “Quick and Dirty” usability scale. In: Jordan, P.W., Thomas, B., Weerdmeester, B.A., et al. (eds.) Usability Evaluation in Industry, pp. 189–194. Taylor & Francis, London (1996)
Chagnon, C., Trapp, A., Djamasbi, S.: Creating a decision support system for service classification and assignment through optimization. In: AMCIS 2017 Proceedings (2017)
Denny, M., Spirling, A.: Text preprocessing for unsupervised learning: why it matters, when it misleads, and what to do about it. Polit. Anal. 26, 168–189 (2018)
Devlin, J., Chang, M.-W., Lee, K., et al.: BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. arXiv preprint arXiv:1810.04805 (2018)
Pedregosa, F., Varoquaux, G., Gramfort, A., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)
Gregor, S., Hevner, A.R.: Positioning and presenting design science research for maximum impact. MIS Q. 37, 337–355 (2013)
Gregor, S., Kruse, L.C., Seidel, S.: The anatomy of a design principle. J. Assoc. Inf. Syst. Forthcoming (2020)
Grupe, F.H.: Outsourcing the help desk function. Inf. Syst. Manag. 14, 15–22 (1997). https://doi.org/10.1080/10580539708907040
Hevner, A.R., March, S.T., Park, J., et al.: Design science in information systems research. MIS Q. 28, 75–105 (2004). https://doi.org/10.2307/25148625
Kubiak, P., Rass, S.: An overview of data-driven techniques for IT-Service-Management. IEEE Access 6, 63664–63688 (2018). https://doi.org/10.1109/ACCESS.2018.2875975
Lacity, M.C., Khan, S.A., Willcocks, L.P.: A review of the IT outsourcing literature: insights for practice. J. Strateg. Inf. Syst. 18, 130–146 (2009)
Lamkanfi, A., Demeyer, S., Soetens, Q.D., et al.: Comparing mining algorithms for predicting the severity of a reported bug. In: 15th European Conference on Software Maintenance and Reengineering, pp. 249–258 (2011)
Lee, Y., Lee, S., Lee, C.-G., et al.: Continual prediction of bug-fix time using deep learning-based activity stream embedding. IEEE Access 8, 10503–10515 (2020)
Li, M.M., Peters, C., Leimeister, J.M.: Designing a peer-based support system to support shakedown. In: International Conference on Information Systems (2017)
Liu, J., Cao, Y., Lin, C.-Y., et al.: Low-quality product review detection in opinion summarization. In: Proceedings of the 2007 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning, pp. 334–342 (2007)
Manning, C.D., Raghavan, P., Schütze, H.: Introduction to Information Retrieval. Cambridge University Press, Cambridge (2008)
McGuinness, D.L., Van Harmelen, F.: OWL Web Ontology Language Overview. W3C Recommend 10 (2004)
Musen, M.A.: The protégé project: a look back and a look forward. AI Matters 1, 4–12 (2015). https://doi.org/10.1145/2757001.2757003
Otterbacher, J.: 'Helpfulness' in online communities. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 955–964 (2009)
Patil, S., Patil, Y.S.: A review on outsourcing with a special reference to telecom operations. Procedia. Soc. Behav. Sci. 133, 400–416 (2014)
Peffers, K., Tuunanen, T., Rothenberger, M.A., et al.: A design science research methodology for information systems research. J. Manag. Inf. Syst. 24, 45–77 (2007)
Peffers, K., Rothenberger, M., Tuunanen, T., et al.: Design science research evaluation. In: International Conference on Design Science Research in Information Systems, pp. 398–410 (2012)
Pembeci, İ: Using word embeddings for ontology enrichment. Int. J. Intell. Syst. Appl. Eng. 4, 49–56 (2016). https://doi.org/10.18201/ijisae.58806
Qi, P., Zhang, Y., Zhang, Y., et al.: Stanza: A Python Natural Language Processing Toolkit for Many Human Languages. arXiv preprint arXiv:2003.07082 (2020)
Radim, R., Sojka, P.: Software framework for topic modelling with large corpora. In: Proceedings of the LREC 2010 Workshop on New Challenges for NLP Frameworks, pp. 45–50 (2010)
Rajman, M., Besançon, R.: Text mining: natural language techniques and text mining applications. In: Spaccapietra, S., Maryanski, F. (eds.) Data Mining and Reverse Engineering. ITIFIP, pp. 50–64. Springer, Boston, MA (1998). https://doi.org/10.1007/978-0-387-35300-5_3
Rhyn, M., Blohm, I.: A machine learning approach for classifying textual data in crowdsourcing. In: Wirtschaftsinformatik 2017 Proceedings (2017)
Roshdi, A., Roohparvar, A.: Review: information retrieval techniques and applications. Int. J. Comput. Netw. Commun. Secur. 3, 373–377 (2015)
Runeson, P., Alexandersson, M., Nyholm, O.: Detection of duplicate defect reports using natural language processing. In: International Conference on Software Engineering, pp. 499–510 (2007)
Salfner, F., Lenk, M., Malek, M.: A survey of online failure prediction methods. ACM Comput. Surv. 42, 1–42 (2010). https://doi.org/10.1145/1670679.1670680
Shanavas, N., Asokan, S.: Ontology-based document mining system for IT support service. Procedia Comput. Sci. 46, 329–336 (2015). https://doi.org/10.1016/j.procs.2015.02.028
Srividhya, V., Anitha, R.: Evaluating preprocessing techniques in text categorization. Int. J. Comput. Sci. Appl. 47, 49–51 (2010)
Venable, J., Pries-Heje, J., Baskerville, R.: FEDS: a framework for evaluation in design science research. Eur. J. Inf. Syst. 25, 77–89 (2016). https://doi.org/10.1057/ejis.2014.36
Xu, H., Zhang, N., Zhou, L.: Validity concerns in research using organic data. J. Manag. 46, 1257–1274 (2020). https://doi.org/10.1177/0149206319862027
Yedida, R., Yang, X., Menzies, T.: When SIMPLE is better than complex: a case study on deep learning for predicting Bugzilla issue close time. arXiv preprint arXiv:2101.06319v1 (2021)
Zhou, W., Tang, L., Zeng, C., et al.: Resolution recommendation for event tickets in service management. IEEE Trans. Netw. Serv. Manage. 13, 954–967 (2016). https://doi.org/10.1109/TNSM.2016.2587807
Zhou, W., Xue, W., Baral, R., et al.: STAR: a system for ticket analysis and resolution. In: Proceedings of the 23rd ACM, pp. 2181–2190. https://doi.org/10.1145/3097983.3098190 (2017)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Schmidt, S.L., Li, M.M., Weigel, S., Peters, C. (2021). Knowledge is Power: Provide Your IT-Support with Domain-Specific High-Quality Solution Material. In: Chandra Kruse, L., Seidel, S., Hausvik, G.I. (eds) The Next Wave of Sociotechnical Design. DESRIST 2021. Lecture Notes in Computer Science(), vol 12807. Springer, Cham. https://doi.org/10.1007/978-3-030-82405-1_22
Download citation
DOI: https://doi.org/10.1007/978-3-030-82405-1_22
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-82404-4
Online ISBN: 978-3-030-82405-1
eBook Packages: Computer ScienceComputer Science (R0)