Skip to main content

A Microservice-Based Reference Architecture for Digital Platforms in the Proteomics Domain

  • Conference paper
  • First Online:
The Next Wave of Sociotechnical Design (DESRIST 2021)

Abstract

Proteomics holds huge innovations for healthcare such as personalized medicine to tremendously increase people’s health. Due to its rapid growth, its multidimensional data sets and the related need for the latest technologies and huge computing capacities, a diverse and scattered tool and repository landscape evolved in an uncontrolled manner. Therefore, tool usage is complicated, time consuming and almost impossible without expert IT skills. To create the conditions for new innovations in the proteomics domain and making first steps towards personalized medicine, digital platforms are needed. However, designing such a system is complex and was not yet supported by information systems. Consequently, we will design and implement a sustainable microservice-based reference architecture for digital platforms in the proteomics domain based on the example of ProteomicsDB that focuses on maintainability, extendibility, and reusability by following the design science requirements. With our reference architecture, we extend evidence-based design knowledge in real-world information systems contributing to information systems research and provide proteomics researchers, but also practitioners a foundation for establishing new business models and enhancing existing or developing new services or platforms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Li, N., Zhan, X.: Signaling pathway network alterations in human ovarian cancers identified with quantitative mitochondrial proteomics. EPMA J. 10(2), 153–172 (2019)

    Article  Google Scholar 

  2. Duarte, T.T., Spencer, C.T.: Personalized proteomics: The future of precision medicine. Proteomes 4(4), 29 (2016)

    Article  Google Scholar 

  3. Parker, C.E., Borchers, C.H.: The special issue: clinical proteomics for precision medicine. Prot. Clin. Appl. 12(2), 1600144 (2018)

    Article  Google Scholar 

  4. Buriani, A., Fortinguerra, S., Carrara, M.: Clinical perspectives in diagnostic-omics and personalized medicine approach to monitor effectiveness and toxicity of phytocomplexes. In: Pelkonen, O., Duez, P., Vuorela, P.M., Vuorela, H. (eds.) Toxicology of Herbal Products, pp. 385–476. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-43806-1_16

    Chapter  Google Scholar 

  5. Nature: Proteomics - Latest research and news (2021). https://www.nature.com/subjects/proteomics. Accessed 15 Mar 2021

  6. Giudice, G., Petsalaki, E.: Proteomics and phosphoproteomics in precision medicine: applications and challenges. Brief. Bioinform. 20(3), 767–777 (2019)

    Article  Google Scholar 

  7. Bozorgi, A., Sabouri, L.: Osteosarcoma, personalized medicine, and tissue engineering; an overview of overlapping fields of research. Cancer Treat. Res. Commun. 27, 100324 (2021)

    Article  Google Scholar 

  8. Drew, L.: Pharmacogenetics: the right drug for you. Nature 537, S60–S62 (2016)

    Article  Google Scholar 

  9. ESF Forward Look: Personalised Medicine for the European Citizen. Towards more precise Medicine for the Diagnosis, Treatment and Prevention of Disease (iPM) (2012). http://archives.esf.org/fileadmin/Public_documents/Publications/Personalised_Medicine.pdf. Accessed 04 Apr 2021

  10. Firestein, G.S.: A biomarker by any other name…. Nat. Clin. Pract. Rheumatol. 2(12), 635 (2006)

    Google Scholar 

  11. Bojkova, D., et al.: Proteomics of SARS-CoV-2-infected host cells reveals therapy targets. Nature 583, 469–472 (2020)

    Article  Google Scholar 

  12. Chekfoung, T., Sun, L., Kecheng, L.: Big data architecture for pervasive healthcare: a literature review. In: European Conference on Information Systems (ECIS) 2015 Proceedings, Münster, Germany (2015).

    Google Scholar 

  13. Chen, T., Lu, P., Lu, L.: Design of ASD subtyping approach based on multi-omics data to promote personalized healthcare. In: Proceedings of the 53rd Hawaii International Conference on System Sciences (HICSS), Maui, Hawaii (2020)

    Google Scholar 

  14. Simons, L.P.A.: Health 2050: Bioinformatics for rapid self-repair; a design analysis for future quantified self. In: BLED 2020 Proceedings, Bled, Slovenia (2020)

    Google Scholar 

  15. Jarvenpaa, S., Markus, M.L.: Genetic platforms and their commercialization: three tales of digital entrepreneurship. In: Proceedings of the 51st Hawaii International Conference on System Sciences (HICSS). Hilton Waikoloa Village, Hawaii (2018).

    Google Scholar 

  16. de Reuver, M., Lessard, L.: Describing health service platform architectures: a guiding framework. In: Americas Conference on Information Systems (AMCIS) 2019 Proceedings, Cancún, Mexico (2019)

    Google Scholar 

  17. Vassilakopoulou, P., et al.: Building national eHealth platforms: the challenge of inclusiveness. In: International Conference on Information Systems (ICIS) 2017 Proceedings, Seoul, South Korea (2017)

    Google Scholar 

  18. Samaras, P., et al.: ProteomicsDB: a multi-omics and multi-organism resource for life science research. Nucleic Acids Res. 48(D1), D1153–D1163 (2019)

    Google Scholar 

  19. Wilhelm, M., et al.: Mass-spectrometry-based draft of the human proteome. Nature 509, 582–587 (2014)

    Article  Google Scholar 

  20. Di Francesco, P., Malavolta, I., Lago, P.: Research on Architecting Microservices: Trends, Focus, and Potential for Industrial Adoption. In: 2017 IEEE International Conference on Software Architecture (ICSA), Gothenburg, Sweden, pp. 21–30 (2017)

    Google Scholar 

  21. Josélyne, M.I., Tuheirwe-Mukasa, D., Kanagwa, B., Balikuddembe, J.: Partitioning microservices: a domain engineering approach. In: Proceedings of the 2018 International Conference on Software Engineering in Africa, Association for Computing Machinery, Gothenburg, Sweden, pp. 43–49 (2018)

    Google Scholar 

  22. Schwartz, A.: Microservices. Informatik-Spektrum 40(6), 590–594 (2017). https://doi.org/10.1007/s00287-017-1078-6

    Article  Google Scholar 

  23. Garriga, M.: Towards a taxonomy of microservices architectures. In: Cerone, A., Roveri, M. (eds.) SEFM 2017. LNCS, vol. 10729, pp. 203–218. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-74781-1_15

    Chapter  Google Scholar 

  24. Fu, G., Sun, J., Zhao, J.: An optimized control access mechanism based on micro-service architecture. In: 2018 2nd IEEE Conference on Energy Internet and Energy System Integration (EI2), Beijing, China, pp. 1–5. IEEE (2018)

    Google Scholar 

  25. Alshuqayran, N., Ali, N., Evans, R.: A systematic mapping study in microservice architecture. In: 2016 IEEE 9th International Conference on Service-Oriented Computing and Applications (SOCA), Macau, China, pp. 44–51. IEEE (2016).

    Google Scholar 

  26. Reidt, A., Pfaff, M., Krcmar, H.: Der Referenzarchitekturbegriff im Wandel der Zeit. HMD Praxis der Wirtschaftsinformatik 55(5), 893–906 (2018). https://doi.org/10.1365/s40702-018-00448-8

  27. Cloutier, R., Muller, G., Verma, D., Nilchiani, R., Hole, E., Bone, M.: The concept of reference architectures. Syst. Eng. 13(1), 14–27 (2009)

    Google Scholar 

  28. Trefke, J.: Grundlagen der referenzarchitekturentwicklung. In: Appelrath, H.-J., Beenken, P., Bischofs, L., Uslar, M. (eds.) IT-Architekturentwicklung im Smart Grid, pp. 9–30. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29208-8_2

    Chapter  Google Scholar 

  29. Reidt, A.: Referenzarchitektur eines integrierten Informationssystems zur Unterstützung der Instandhaltung. Universitätsbibliothek der TU München, München (2019)

    Google Scholar 

  30. Hevner, A.R., March, S.T., Park, J., Ram, S.: Design science in information systems research. MIS Q. 28(1), 75–105 (2004)

    Article  Google Scholar 

  31. Vom Brocke, J., Simons, A., Niehaves, B., Riemer, K., Plattfaut, R., Cleven, A.: Reconstructing the giant: on the importance of rigour in documenting the literature search process. In: European Conference on Information Systems (ECIS) 2009 Proceedings, Verona, Italy (2009)

    Google Scholar 

  32. Webster, J., Watson, R.T.: Analyzing the past to prepare for the future: writing a literature review. MIS Q. 26(2), xiii–xxiii (2002)

    Google Scholar 

  33. Mayring, P., Fenzl, T.: Qualitative inhaltsanalyse. In: Baur, N., Blasius, J. (eds.) Handbuch Methoden der empirischen Sozialforschung, pp. 543–556. Springer, Wiesbaden (2014). https://doi.org/10.1007/978-3-531-18939-0_38

    Chapter  Google Scholar 

  34. Gläser, J., Laudel, G.: Experteninterviews und qualitative Inhaltsanalyse als Instrumente rekonstruierender Untersuchungen, 4th edn. VS Verlag für Sozialwissenschaften, Wiesbaden (2010)

    Book  Google Scholar 

  35. Laplante, P.A.: What Every Engineer Should Know about Software Engineering, 1st edn. Taylor and Francis Group, Boca Raton (2007)

    Book  Google Scholar 

  36. Peffers, K., Rothenberger, M., Tuunanen, T., Vaezi, R.: Design science research evaluation. In: Peffers, K., Rothenberger, M., Kuechler, B. (eds.) Design Science Research in Information Systems. Advances in Theory and Practice. DESRIST 2012. LNCS, vol. 7286, pp. 398–410. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29863-9_29

  37. Rehse, J.-R., Hake, P., Fettke, P., Loos, P.: Inductive Reference Model Development: Recent Results and Current Challenges. In: Mayr, H.C., Pinzger, M. (eds.) Informatik 2016, pp. 739–752. Gesellschaft für Informatik e.V., Bonn (2016)

    Google Scholar 

  38. Baskerville, R., Baiyere, A., Gergor, S., Hevner, A., Rossi, M.: Design science research contributions: finding a balance between artifact and theory. J. Assoc. Inf. Syst. 19(5), 358–376 (2018)

    Google Scholar 

  39. Brax, S.A., Bask, A., Hsuan, J., Voss, C.: Service modularity and architecture – an overview and research agenda. Int. J. Oper. Prod. Manag. 37(6), 686–702 (2017)

    Article  Google Scholar 

  40. Böhmann, T., Leimeister, J.M., Möslein, K.: Service systems engineering. Wirtschaftsinformatik 56(2), 83–90 (2014). https://doi.org/10.1007/s11576-014-0406-6

Download references

Acknowledgements

We thank the German Federal Ministry of Education and Research for funding this research as part of the project 031L0168 (DIAS). We explicitly thank Prof. Dr. Bernhard Küster, Prof. Dr. Mathias Wilhelm, Sascha Ladewig and all involved people for actively supporting our research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marwin Shraideh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Shraideh, M., Samaras, P., Schreieck, M., Krcmar, H. (2021). A Microservice-Based Reference Architecture for Digital Platforms in the Proteomics Domain. In: Chandra Kruse, L., Seidel, S., Hausvik, G.I. (eds) The Next Wave of Sociotechnical Design. DESRIST 2021. Lecture Notes in Computer Science(), vol 12807. Springer, Cham. https://doi.org/10.1007/978-3-030-82405-1_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-82405-1_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-82404-4

  • Online ISBN: 978-3-030-82405-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics