Skip to main content

Design of Embedded Network Human Machine Interface Based on VR Technology

  • Conference paper
  • First Online:
Multimedia Technology and Enhanced Learning (ICMTEL 2021)

Abstract

In order to reduce the number of embedded network control pins in human-computer interface and enhance the reliability of embedded network human-computer interaction interface, a design of embedded network human-computer interaction interface based on virtual reality technology is introduced. In terms of hardware, the controller uses tms320lf28035 DSP chip, and its EVM board is used as the extended digital interface and display module. In terms of software, the keyboard adopts timer interrupt management to save DSP hardware resources and complete human-computer interaction. The circuit meets the requirements of general frequency converter for data input and output display. The serial parallel conversion chip can save hardware resources and provide reference for frequency converter to realize more control functions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Zhang, D., Lei, Y., Shen, Z.: Effect of longitudinal magnetic field on vibration response of double-walled carbon nanotubes embedded in viscoelastic medium. Acta Mech. Solida Sin. 31(02), 1–20 (2018)

    Google Scholar 

  2. Michalakis, K., Aliprantis, J., Caridakis, G.: Visualizing the internet of things: naturalizing human-computer interaction by incorporating AR features. IEEE Consum. Electr. Mag. 7(3), 64–72 (2018)

    Article  Google Scholar 

  3. Hazer-Rau, D., Meudt, S., Daucher, A., et al.: The uulmMAC database—a multimodal affective corpus for affective computing in human-computer interaction. Sensors 20(8), 2308 (2020)

    Article  Google Scholar 

  4. Przybyo, J.: Continuous distant measurement of the user’s heart rate in human-computer interaction applications. Sensors 19(19), 4205–4208 (2019)

    Article  Google Scholar 

  5. Liao, Y.F., Chang, Y.H.S., Lin, Y.C., et al.: Formosa speech in the wild corpus for improving Taiwanese Mandarin speech-enabled human-computer interaction. J. Signal Process. Syst. 92(8), 853–873 (2020)

    Article  Google Scholar 

  6. Martins, V.F., Guimaraes, M.D.P.: Star life cycle and games development projects for conducting the human–computer interaction course: a practical experience. Comput. Appl. Eng. Educ. 26(5), 1539–1551 (2018)

    Article  Google Scholar 

  7. Liu, S., Lu, M., Li, H., et al.: Prediction of gene expression patterns with generalized linear regression model. Front. Genet. 10, 120 (2019)

    Article  Google Scholar 

  8. Jyoti, V., Lahiri, U.: Human-computer interaction based joint attention cues: implications on functional and physiological measures for children with autism spectrum disorder. Comput. Hum. Behav. 104(Mar), 106163.1–106163.14 (2020)

    Google Scholar 

  9. El Said, G.R.: The intention to use mobile student portal: a mobile human computer interaction study in a university context in Egypt. Mob. Inf. Syst. 2018(PT.2), 1512602.1–1512602.8 (2018)

    Google Scholar 

  10. Sarzynska, M., Leicht, E.A., Chowell, G., et al.: Null models for community detection in spatially-embedded, temporal networks. J. Complex Netw. 4(3), 363–406 (2018)

    Article  MathSciNet  Google Scholar 

  11. Kai, X., Qingshan, D., Lujun, C., et al.: Damage detection of a concrete column subject to blast loads using embedded piezoceramic transducers. Sensors 18(5), 1377 (2018)

    Article  Google Scholar 

  12. Liu, S., Liu, D., Srivastava, G., Połap, D., Woźniak, M.: Overview and methods of correlation filter algorithms in object tracking. Complex Intell. Syst. 1–23 (2020). https://doi.org/10.1007/s40747-020-00161-4

  13. Liu, S., Bai, W., Zeng, N., et al.: A fast fractal based compression for MRI images. IEEE Access 7, 62412–62420 (2019)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Huang, Y., Wang, Y. (2021). Design of Embedded Network Human Machine Interface Based on VR Technology. In: Fu, W., Xu, Y., Wang, SH., Zhang, Y. (eds) Multimedia Technology and Enhanced Learning. ICMTEL 2021. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 387. Springer, Cham. https://doi.org/10.1007/978-3-030-82562-1_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-82562-1_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-82561-4

  • Online ISBN: 978-3-030-82562-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics