Skip to main content

Research on Residential Power Consumption Behavior Based on Typical Load Pattern

  • Conference paper
  • First Online:
Multimedia Technology and Enhanced Learning (ICMTEL 2021)

Abstract

According to the current analysis of residents’ electricity consumption behavior, with the popularization of smart meters, to a certain extent, residents’ electricity consumption data can be collected more efficiently and accurately to ensure the accuracy of subsequent electricity consumption behavior analysis. Based on the traditional fuzzy C-means clustering, clustering analysis can be performed on residential electricity consumption behavior. However, due to the large volume of data, more noise points will be generated in traditional clustering analysis, which will affect the clustering results. When studying the electricity consumption behavior of residents, based on a large amount of electricity consumption data, traditional clustering analysis will generate more noise points, which will affect the clustering results. In the study of electricity consumption behavior, the artificial neural network is introduced in the data preprocessing to classify the data. It can be found that the fuzzy C-means clustering combined with the neural network can effectively eliminate the noise points and have a good clustering effect.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pan, S., et al.: Cluster analysis for occupant-behavior based electricity load patterns in buildings: a case study in Shanghai residences. Build. Simul. 10(6), 889–898 (2017)

    Article  Google Scholar 

  2. Valderrama, J.F.B., Valderrama, D.J.L.B.: Two cluster validity indices for the LAMDA clustering method. Appl. Soft Comput. J. 89, 106102 (2020)

    Google Scholar 

  3. Chen, Q., Ma, Y.M.: The research on cloud platform considered privacy household load data processing. Adv. Mater. Res. 1049–1050, 1929–1933 (2014)

    Article  Google Scholar 

  4. Cheng, Q., Min, C., Ciwei, G., Huixing, L., Tugang, S.: Research on the analysis of user’s electricity behavior and the application of demand response based on global energy interconnection. In: 2016 China International Conference on Electricity Distribution (CICED) (2016)

    Google Scholar 

  5. Jackson, D.B.: System and method for managing energy consumption in a compute environment (2012)

    Google Scholar 

  6. Ke, X., Yufeng, X., Wenbin, N., Ting, L.: Analysis of electricity use behavior with clustering method and classification of peak and valley periods (2019)

    Google Scholar 

  7. Ozawa, A., Furusato, R., Yoshida, Y.: Determining the relationship between a household’s lifestyle and its electricity consumption in Japan by analyzing measured electric load profiles. Energy Build. 119, 200–210 (2016)

    Article  Google Scholar 

  8. Panapakidis, I.P., Alexiadis, M.C., Papagiannis, G.K.: Deriving the optimal number of clusters in the electricity consumer segmentation procedure. In: European Energy Market (2013)

    Google Scholar 

  9. Perez, J., Velasquez, J.D., Franco, C.J.: Characterization of the hourly load curve in the colombian electricity market. IEEE Lat. Am. Trans. 13(12), 3826–3831 (2015)

    Article  Google Scholar 

  10. Song, C., Wang, C., Ahuja, N., Zhou, X., Daniel, A.: Optimize datacenter management with multi-tier thermal-intelligent workload placement. In: Thermal Measurement, Modeling and Management Symposium (2015)

    Google Scholar 

  11. Tajeuna, E.G., Bouguessa, M., Wang, S.: A network-based approach to enhance electricity load forecasting. In: 2018 IEEE International Conference on Data Mining Workshops (ICDMW) (2018)

    Google Scholar 

  12. Trotta, G., Gram-Hanssen, K., Jrgensen, P.L.: Heterogeneity of electricity consumption patterns in vulnerable households. Energies 13 (2020)

    Google Scholar 

  13. Yang, Z., Lin, X., Jiang, W., Li, G.: An electricity data cluster analysis method based on saga-fcm algorithm. In: IEEE International Conference on Networking (2017)

    Google Scholar 

Download references

Acknowledgment

Funding from the key research and development project of Shandong province (2012CX30302) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mao, A., Qiao, J., Zhang, Y. (2021). Research on Residential Power Consumption Behavior Based on Typical Load Pattern. In: Fu, W., Xu, Y., Wang, SH., Zhang, Y. (eds) Multimedia Technology and Enhanced Learning. ICMTEL 2021. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 387. Springer, Cham. https://doi.org/10.1007/978-3-030-82562-1_46

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-82562-1_46

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-82561-4

  • Online ISBN: 978-3-030-82562-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics