Skip to main content

A Novel Brain-Like Navigation Based on Dynamic Attention with Modified Unet

  • Conference paper
  • First Online:
Multimedia Technology and Enhanced Learning (ICMTEL 2021)

Abstract

In cognitive navigation system, animals show an inborn ability of spatial representations and correct self-positioning errors at every fired cell. Inspired by navigation mechanism of animals, we propose a novel strategy to improve the navigation accuracy of brain-like navigation based on UAV. Firstly, we employs encoder-decoder structure based on Unet to solve semantic segmentation tasks. Unet are able to encoder detailed information of images by constantly pooling and upsampling operations with less training parameters, while it often ignores high-level spatial information. Hence, we propose “dynamic attention with modified Unet” structure, which learns high-level information maintaining less training parameters. Specifically, multi-scale atrous convolutions are adopted in dynamic modules between encoder and decoder to extract features at different resolution. Secondly, the pixels with maximum probability segmentation are extracted, and they will be mapped to satellite map to obtain actual position coordinate of UAV. Finally, positioning errors are corrected at each place cells in the brain-like navigation of UAV. Our results show that proposed segmentation model improve performance by 9.64% compared with conventional Unet, and the positioning accuracy is improved by 90.52%.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Atia, M.M., Waslander, S.L.: Map-aided adaptive GNSS/IMU sensor fusion scheme for robust urban navigation. Measurement 131, 615–627 (2019)

    Google Scholar 

  2. Huajin, T., Weiwei, H., Aditya, N., Rui, Y.: Cognitive memory and mapping in a brain-like system for robotic navigation. Neural Networks 87, 27–37 (2017)

    Google Scholar 

  3. Shen, C., Liu, X.C., Cao, H.L., Zhou, Y.C.: Brain-Like navigation scheme based on MEMS-INS and place recognition. Appl. Sci. 9, 1708 (2019)

    Article  Google Scholar 

  4. Jiawang, B., Wenyan, L., Yasuyuki, M.: GMS: grid-based motion statistics for fast, ultra-robust feature correspondence. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2528–2837 (2017)

    Google Scholar 

  5. Krichmar, J.L., Aitz, N.D., Gally, A.J., Edelman, G.M.: Characterizing functional hippocampal pathways in a brain-based device as it solves a spatial memory task. Proc. Natl. Acad. Sci. 102, 2111–2116 (2004)

    Google Scholar 

  6. Weijer, V.D., Gevers, J.T., Gijsenij, A.: Edge-based color constancy. IEEE Trans. Image Process. 16, 2207–2214 (2007)

    Google Scholar 

  7. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  8. Chen, L.C., George, P., Florian, S., Hartwig, A.: Rethinking atrous convolution for semantic image segmentation. In: IEEE Conference on Computer Vision and Pattern Recognition (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiyuan Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, Y., Chen, X. (2021). A Novel Brain-Like Navigation Based on Dynamic Attention with Modified Unet. In: Fu, W., Xu, Y., Wang, SH., Zhang, Y. (eds) Multimedia Technology and Enhanced Learning. ICMTEL 2021. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 387. Springer, Cham. https://doi.org/10.1007/978-3-030-82562-1_52

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-82562-1_52

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-82561-4

  • Online ISBN: 978-3-030-82562-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics