Skip to main content

Intelligent Scheduling of Distributed Displacement Pipeline Based on Hybrid Discrete Drosophila Optimization Algorithm

  • Conference paper
  • First Online:
Multimedia Technology and Enhanced Learning (ICMTEL 2021)

Absrtact

In order to solve the problem of long scheduling time and low efficiency of interval number representation scheduling method, a distributed replacement Pipeline Intelligent Scheduling Based on hybrid discrete Drosophila optimization algorithm is proposed. According to the distributed permutation pipeline scheduling problem, the coding method based on operation is adopted to make the algorithm suitable for solving the scheduling problem. The hybrid discrete Drosophila optimization algorithm is used to solve the batch pipeline scheduling problem with the maximum completion time as the goal. In order to balance the local search ability of the algorithm, the evolutionary mechanism is combined with cooperative learning among groups. Build a mathematical model to achieve efficient scheduling in the maximum completion time. The simulation results show that the scheduling time of this method is short, and the overall scheduling efficiency is higher than 80%, which has good scheduling effect.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Liao, Q., Zhang, H., Xu, N., et al.: A MILP model based on flowrate database for detailed scheduling of a multi-product pipeline with multiple pump stations. Comput. Chem. Eng. 117(2), 63–81 (2018)

    Article  Google Scholar 

  2. Asl, N.B., Mirhassani, S.A.: Benders decomposition with integer sub-problem applied to pipeline scheduling problem under flow rate uncertainty. Comput. Chem. Eng. 123(6), 222–235 (2019)

    Article  Google Scholar 

  3. Qin, H., Chen, W., Cao, B., Zeng, M., Li, J., Peng, Y.: DIPS: dual-interface dual-pipeline scheduling for energy-efficient multihop communications in IoT. IEEE Internet Things J. 6(1), 718–733 (2019). https://doi.org/10.1109/JIOT.2018.2855695

    Article  Google Scholar 

  4. Chang, X., Xu, X., Yang, D.: Pipeline scheduling based on constructive interference in strip wireless sensor networks. Comput. Mater. Continua 64(1), 193–206 (2020)

    Article  Google Scholar 

  5. Moradi, S., Mirhassani, S.A., Hooshmand, F.: Efficient decomposition-based algorithm to solve long-term pipeline scheduling problem. Petrol. Sci. 16(5), 1159–1175 (2019)

    Article  Google Scholar 

  6. Amine, A., Mouhoub, M., Ait Mohamed, O., et al.: Optimal Scheduling of Multiproduct Pipeline System Using MILP Continuous Approach. In: IFIP Advances in Information and Communication Technology Computational Intelligence and its Applications, vol. 522 (2018). https://doi.org/10.1007/978-3-319-89743-1(36):411-420

  7. Fu, W., Liu, S., Srivastava, G.: Optimization of big data scheduling in social networks. Entropy 21(9), 902 (2019)

    Article  MathSciNet  Google Scholar 

  8. Liu, S., Li, Z., Zhang, Y., et al.: Introduction of key problems in long-distance learning and training. Mob. Netw. Appl. 24(1), 1–4 (2019)

    Article  Google Scholar 

  9. Liu, S., Liu, D., Srivastava, G., et al.: Overview and methods of correlation filter algorithms in object tracking. Comp. Intell. Syst. (2020). https://doi.org/10.1007/s40747-020-00161-4

  10. Krishnadas, G., Kiprakis, A., Sciubba, E.: A machine learning pipeline for demand response capacity scheduling. Energies 13(7), 1848 (2020)

    Article  Google Scholar 

  11. Qiu, S., Wang, S., Xiao, C., Ge, S.: Assessment of microalgae as a new feeding additive for fruit fly Drosophila melanogaster. Sci. Total Environ. 667, 455–463 (2019). https://doi.org/10.1016/j.scitotenv.2019.02.414

    Article  Google Scholar 

  12. Yang, X., Han, Y., Mu, Y., et al.: Multigenerational effects of cadmium on the lifespan and fertility of Drosophila melanogaster. Chemosphere 245(Apr), 125533.1-125533.7 (2020)

    Google Scholar 

  13. Gärtner, S., Hundertmark, T., Nolte, H., Theofel, I., Eren-Ghiani, Z., Tetzner, C., Duchow, T., Rathke, C., Krüger, M., Renkawitz, R.: Stage-specific testes proteomics of Drosophila melanogaster identifies essential proteins for male fertility. Eur. J. Cell Biol. 98(2–4), 103–115 (2019). https://doi.org/10.1016/j.ejcb.2019.01.001

    Article  Google Scholar 

  14. Hsieh, Fu-Shiung., Guo, Yi-Hong.: A discrete cooperatively coevolving particle swarm optimization algorithm for combinatorial double auctions. Appl. Intell. 49(11), 3845–3863 (2019). https://doi.org/10.1007/s10489-019-01556-8

    Article  Google Scholar 

  15. Lakshman, A.A., et al.: Selection for timing of eclosion results in co-evolution of temperature responsiveness in drosophila melanogaster. J. Biol. Rhyth. 34(6), 596–609 (2019)

    Article  Google Scholar 

  16. Qiu, B., Guo, J., Li, X., et al.: Discrete-time advanced zeroing neurodynamic algorithm applied to future equality-constrained nonlinear optimization with various noises. IEEE Trans. Cybern. (99), 1-14 (2020)

    Google Scholar 

  17. Wu, Q., Zhang, R.: Beamforming optimization for wireless network aided by intelligent reflecting surface with discrete phase shifts. IEEE Trans. Commun. 68(3), 1838–1851 (2020)

    Article  Google Scholar 

  18. Shao, Z., Pi, D., Shao, W.: A novel multi-objective discrete water wave optimization for solving multi-objective blocking flow-shop scheduling problem. 165(FEB.1), 110–131 (2019)

    Google Scholar 

  19. Zhang, J., You, K., Basar, T.: Distributed discrete-time optimization in multiagent networks using only sign of relative state. IEEE Trans. Autom. Control 64(6), 2352–2367 (2019)

    Article  MathSciNet  Google Scholar 

  20. Teng, Y., Yang, L., Song, X., et al.: An augmented Lagrangian proximal alternating method for sparse discrete optimization problems. Numer. Algor. 83(3), 833–866 (2020)

    Article  MathSciNet  Google Scholar 

  21. Li, Y., Yang, W., He, P., et al.: Design and management of a distributed hybrid energy system through smart contract and blockchain. Appl. Energy 248(15), 390–405 (2019)

    Article  Google Scholar 

  22. Spencer, A.A.M.S., Luciano, S., Mario, M.: Analysis and design of high-efficiency hybrid high step-up DC-DC converter for distributed PV generation systems. IEEE Trans. Ind. Electron. (5), 1 (2018)

    Google Scholar 

  23. Zhang, L., Liu, W., Qi, B.: Innovation design and optimization management of a new drive system for plug-in hybrid electric vehicles. Energy 186, 115823.1-115823.19 (2019). https://doi.org/10.1016/j.energy.2019.07.153

    Article  Google Scholar 

  24. Zkik, K., Hajji, S.E., Orhanou, G.: Design and implementation of a new security plane for hybrid distributed SDNs. J. Commun. 14(1), 26–32 (2019)

    Article  Google Scholar 

  25. Han, X., Dong, Y., Yue, L., Quanxi, X.: State transition simulated annealing algorithm for discrete-continuous optimization problems. IEEE Access 7, 44391–44403 (2019). https://doi.org/10.1109/ACCESS.2019.2908961

    Article  Google Scholar 

  26. Kamalakis, T., Dogkas, L., Simou, F.: Optimization of a discrete multi-tone visible light communication system using a mixed-integer genetic algorithm. Optics Commun. 485(1), 126741 (2020)

    Google Scholar 

  27. Wang, L., Guohua, W., Gao, L.: Thematic issue on “advanced intelligent scheduling algorithms for smart manufacturing systems.” Memetic Comput. 11(4), 333–334 (2019). https://doi.org/10.1007/s12293-019-00297-y

    Article  Google Scholar 

  28. Kamalakis, T., Dogkas, L., Simou, F.: Optimization of a discrete multi-tone visible light communication system using a mixed-integer genetic algorithm. Optics Commun. 485(8), 126741 (2020)

    Google Scholar 

  29. Rui, L., Qin, Y., Li, B., et al.: Context-based intelligent scheduling and knowledge push algorithms for ar-assist communication network maintenance. Comput. Model. Eng. Sci. 118(2), 291–315 (2019)

    Google Scholar 

  30. Bruballa, E., Wong, A., Rexachs, D., et al.: An intelligent scheduling of non-critical patients admission for emergency department. IEEE Access (99), 1 (2019)

    Google Scholar 

  31. Yuan, L.: Scheduling analysis of intelligent machining system based on combined weights. IOP Conf. Ser. Mater. Sci. Eng. 493(1), 12146 (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pan Yuxia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yuxia, P., Guang, X. (2021). Intelligent Scheduling of Distributed Displacement Pipeline Based on Hybrid Discrete Drosophila Optimization Algorithm. In: Fu, W., Xu, Y., Wang, SH., Zhang, Y. (eds) Multimedia Technology and Enhanced Learning. ICMTEL 2021. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 387. Springer, Cham. https://doi.org/10.1007/978-3-030-82562-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-82562-1_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-82561-4

  • Online ISBN: 978-3-030-82562-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics