Skip to main content

Facial Expression Recognition via ResNet-18

  • Conference paper
  • First Online:
Multimedia Technology and Enhanced Learning (ICMTEL 2021)

Abstract

As an important part of human-computer interaction, facial expression recognition has become a hot research topic in the fields of computer vision, pattern recognition, artificial intelligence, etc., and plays an important role in our daily life. With the development of deep learning and convolutional neural network, the research of facial expression recognition has also made great progress. Moreover, in the current face emotion recognition research, there are problems such as poor generalization ability of network model. The extraction of traditional facial expression recognition features is complex and the effect is not ideal. In order to improve the effect of facial expression recognition, we propose a feature extraction method for deep residual network, and use deep residual network ResNet-18 to extract the features of the data set. Through the experimental simulation of the specified data set, it can be proved that this model is superior to state-of-the-art methods model.

B. Li and R. Li—Those two authors contributed equally to this paper, and should be regarded as co-first authors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Oji-Mmuo, C.N., Speer, R.R., Gardner, F.C., Marvin, M.M., Hozella, A.C., Doheny, K.K.: Prenatal opioid exposure heightens sympathetic arousal and facial expressions of pain/distress in term neonates at 24–48 hours post birth. J. Maternal-Fetal Neonatal Med. 33, 3879–3886 (2020)

    Article  Google Scholar 

  2. Ali, H., Hariharan, M., Yaacob, S., Adom, A.H.: Facial Emotion recognition based on higher-order spectra using support vector machines. J. Med. Imaging Health Inf. 5, 1272–1277 (2015)

    Article  Google Scholar 

  3. Evans, F.: Haar wavelet transform based facial emotion recognition. Adv. Comput. Sci. Res. 61, 342–346 (2017)

    Google Scholar 

  4. Lu, H.M.: Facial emotion recognition based on biorthogonal wavelet entropy, fuzzy support vector machine, and stratified cross validation. IEEE Access 4, 8375–8385 (2016)

    Article  Google Scholar 

  5. Phillips, P.: Intelligent facial emotion recognition based on stationary wavelet entropy and Jaya algorithm. Neurocomputing 272, 668–676 (2018)

    Article  Google Scholar 

  6. Wang, S.-H., Yang, W., Dong, Z., Phillips, P., Zhang, Y.-D.: Facial emotion recognition via discrete wavelet transform, principal component analysis, and cat swarm optimization. In: Sun, Yi., Lu, H., Zhang, L., Yang, J., Huang, H. (eds.) IScIDE 2017. LNCS, vol. 10559, pp. 203–214. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67777-4_18

    Chapter  Google Scholar 

  7. Li, X.: Facial emotion recognition via stationary wavelet entropy and biogeography-based optimization. EAI Endorsed Trans. e-Learn. 6, Article ID: e4 (2020)

    Google Scholar 

  8. Lv, Y.-D.: Alcoholism detection by data augmentation and convolutional neural network with stochastic pooling. J. Med. Syst. 42, Article ID: 2 (2018)

    Google Scholar 

  9. Tang, C.: Twelve-layer deep convolutional neural network with stochastic pooling for tea category classification on GPU platform. Multimed. Tools Appl. 77, 22821–22839 (2018)

    Google Scholar 

  10. Pan, C.: Abnormal breast identification by nine-layer convolutional neural network with parametric rectified linear unit and rank-based stochastic pooling. J. Comput. Sci. 27, 57–68 (2018)

    Article  Google Scholar 

  11. Hasebe, T., Ueda, Y.: Unimodality for free multiplicative convolution with free normal distributions on the unit circle. J. Oper. Theory 85, 21–43 (2021)

    MathSciNet  Google Scholar 

  12. Belinschi, S.T., Bercovici, H., Liu, W.H.: The atoms of operator-valued free convolutions. J. Oper. Theory 85, 303–320 (2021)

    MathSciNet  Google Scholar 

  13. Kumar, S., Mahadevappa, M., Dutta, P.K.: Lensless in-line holographic microscopy with light source of low spatio-temporal coherence. IEEE J. Sel. Top. Quantum Electron. 27, 8, Article ID: 6800608 (2021)

    Google Scholar 

  14. Fujioka, T., Yashima, Y., Oyama, J., Mori, M., Kubota, K., Katsuta, L., et al.: Deep-learning approach with convolutional neural network for classification of maximum intensity projections of dynamic contrast-enhanced breast magnetic resonance imaging. Magn. Reson. Imaging 75, 1–8 (2021)

    Article  Google Scholar 

  15. Hou, X.-X.: Seven-layer deep neural network based on sparse autoencoder for voxelwise detection of cerebral microbleed. Multimed. Tools Appl. 77, 10521–10538 (2018)

    Google Scholar 

  16. Pan, C.: Multiple sclerosis identification by convolutional neural network with dropout and parametric ReLU. J. Comput. Sci. 28, 1–10 (2018)

    Article  MathSciNet  Google Scholar 

  17. Bercovici, H., Dykema, K., Nica, A.: Dan-virgil voiculescu at seventy. J. Oper. Theory 85, 5–20 (2021)

    MathSciNet  Google Scholar 

  18. Egger, H., Schmidt, K., Shashkov, V.: Multistep and Runge-Kutta convolution quadrature methods for coupled dynamical systems. J. Comput. Appl. Math. 387, 14, Article ID: 112618 (2021)

    Google Scholar 

  19. Erbay, H.A., Erbay, S., Erkip, A.: A semi-discrete numerical method for convolution-type unidirectional wave equations. J. Comput. Appl. Math. 387, 13, Article ID: 112496 (2021)

    Google Scholar 

  20. Katsagounos, I., Thomakos, D.D., Litsiou, K., Nikolopoulos, K.: Superforecasting reality check: evidence from a small pool of experts and expedited identification. Eur. J. Oper. Res. 289, 107–117 (2021)

    Article  MATH  Google Scholar 

  21. Huang, C.: Multiple sclerosis identification by 14-layer convolutional neural network with batch normalization, dropout, and stochastic pooling. Front. Neurosci. 12, Article ID: 818 (2018)

    Google Scholar 

  22. Zhao, G.: Polarimetric synthetic aperture radar image segmentation by convolutional neural network using graphical processing units. J. Real-Time Image Proc. 15, 631–642 (2018)

    Google Scholar 

  23. Muhammad, K.: Image based fruit category classification by 13-layer deep convolutional neural network and data augmentation. Multimed. Tools Appl. 78, 3613–3632 (2019)

    Google Scholar 

  24. Wang, S.-H., Sun, J.: Cerebral micro-bleeding identification based on a nine-layer convolutional neural network with stochastic pooling. Concurr. Comput. Pract. Exp. 32, e5130 (2020)

    Google Scholar 

  25. Sangaiah, A.K.: Alcoholism identification via convolutional neural network based on parametric ReLU, dropout, and batch normalization. Neural Comput. Appl. 32, 665–680 (2020)

    Google Scholar 

  26. Choi, S.H., Jung, S.H.: Stable acquisition of fine-grained segments using batch normalization and focal loss with L1 regularization in U-Net structure. Int. J. Fuzzy Logic Intell. Syst. 20, 59–68 (2020)

    Article  Google Scholar 

  27. Wang, S.-H.: DenseNet-201-based deep neural network with composite learning factor and precomputation for multiple sclerosis classification. ACM Trans. Multimed. Comput. Commun. Appl. 16, Article no. 60 (2020)

    Google Scholar 

  28. Olimov, B., Karshiev, S., Jang, E., Din, S., Paul, A., Kim, J.: Weight initialization based-rectified linear unit activation function to improve the performance of a convolutional neural network model. Concurr. Comput. Pract. Exp. 11 (2021). (Article; Early Access). https://doi.org/10.1002/cpe.6143

  29. Zhang, Y.-D.: Advances in multimodal data fusion in neuroimaging: overview, challenges, and novel orientation. Inf. Fusion 64, 149–187 (2020)

    Article  Google Scholar 

  30. Wang, S.-H.: Covid-19 classification by FGCNet with deep feature fusion from graph convolutional network and convolutional neural network. Inf. Fusion 67, 208–229 (2021)

    Article  Google Scholar 

  31. Yaliniz, G., Ikizler-Cinbis, N.: Using independently recurrent networks for reinforcement learning based unsupervised video summarization. Multimed. Tools Appl. 80 (2021). (Article; Early Access). https://doi.org/10.1007/s11042-020-10293-x

  32. Kawahara, D., Tang, X.Y., Lee, C.K., Nagata, Y., Watanabe, Y.: Predicting the local response of metastatic brain tumor to gamma knife radiosurgery by radiomics with a machine learning method. Front. Oncol. 10, 8, Article ID: 569461 (2021)

    Google Scholar 

  33. Dubey, S.R., Chakraborty, S.: Average biased ReLU based CNN descriptor for improved face retrieval. Multimed. Tools Appl., 26 (2021)

    Google Scholar 

  34. Yamaguchi, M., Iwamoto, G., Nishimura, Y., Tamukoh, H., Morie, T.: An energy-efficient time-domain analog CMOS BinaryConnect neural network processor based on a pulse-width modulation approach. IEEE Access 9, 2644–2654 (2021)

    Article  Google Scholar 

  35. Farrell, M.H., Liang, T.Y., Misra, S.: Deep neural networks for estimation and inference. Econometrica 89, 181–213 (2021)

    Article  MathSciNet  Google Scholar 

  36. Tripathi, D., Edla, D.R., Kuppili, V., Bablani, A.: Evolutionary extreme learning machine with novel activation function for credit scoring. Eng. Appl. Artif. Intell. 96, 10, Article ID: 103980 (2020)

    Google Scholar 

  37. Satapathy, S.C.: A five-layer deep convolutional neural network with stochastic pooling for chest CT-based COVID-19 diagnosis. Mach. Vis. Appl. 32, Article ID: 14 (2021)

    Google Scholar 

  38. Moon, S.: ReLU network with bounded width is a universal approximator in view of an approximate identity. Appl. Sci. 11, 11, Article ID: 427 (2021)

    Google Scholar 

  39. Bernardo, P.P., Gerum, C., Frischknecht, A., Lubeck, K., Bringmann, O.: UltraTrail: a configurable ultralow-power TC-ResNet AI accelerator for efficient keyword spotting. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 39, 4240–4251 (2020)

    Article  Google Scholar 

  40. Alotaibi, B., Alotaibi, M.: A hybrid deep ResNet and inception model for hyperspectral image classification. PFG J. Photogramm. Remote Sens. Geoinf. Sci. 88, 463–476 (2020)

    Google Scholar 

  41. Hammad, M., Plawiak, P., Wang, K.Q., Acharya, U.R.: ResNet-attention model for human authentication using ECG signals. Expert Syst., 17, Article ID: e12547 (2020)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dimas Lima .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, B., Li, R., Lima, D. (2021). Facial Expression Recognition via ResNet-18. In: Fu, W., Xu, Y., Wang, SH., Zhang, Y. (eds) Multimedia Technology and Enhanced Learning. ICMTEL 2021. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 388. Springer, Cham. https://doi.org/10.1007/978-3-030-82565-2_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-82565-2_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-82564-5

  • Online ISBN: 978-3-030-82565-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics