Skip to main content

Efficient Scheduling of Periodic, Aperiodic, and Sporadic Real-Time Tasks with Deadline Constraints

  • Conference paper
  • First Online:
Software Technologies (ICSOFT 2020)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1447))

Included in the following conference series:

  • 291 Accesses

Abstract

A real-time system is an operating system that guarantees a certain functionality within a specified time constraint. Such system is composed of tasks of various types: periodic, sporadic and aperiodic. These tasks can be subjected to a variety of temporal constraints, the most important one is the deadline. Thus, a reaction occurring too late may be useless or even dangerous. In this context, the main problem of this study is how to configure feasible real-time system having both periodic, aperiodic and sporadic tasks. This paper shows an approach for computing deadlines in uniprocessor real-time systems to guarantee real-time feasibility for hard-deadline periodic and sporadic tasks and provide good responsiveness for soft-deadline aperiodic tasks. An application to a case study and performance evaluation show the effectiveness of the proposed approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

\(\varPi \) :

Real-time system;

\(\mathcal {P}\) :

Set of periodic tasks in \(\varPi \);

\(\mathcal {S}\) :

Set of sporadic tasks in \(\varPi \);

\(\mathcal {A}\) :

Set of aperiodic tasks in \(\varPi \);

n :

Number of periodic tasks in \(\varPi \);

m :

Number of sporadic tasks in \(\varPi \);

k :

Number of aperiodic tasks in \(\varPi \);

\(\tau ^{0}_i\) :

Periodic task;

\(\tau ^{0}_{ij}\) :

The jth job of \(\tau ^{0}_{i}\);

\(\tau ^{1}_e\) :

Sporadic task;

\(\tau ^{1}_{ef}\) :

The fth job of \(\tau ^{0}_{e}\);

\(\tau ^{2}_{o}\) :

Aperiodic task;

\(R^{0}_i\) :

Release time of \(\tau ^{0}_i\);

\(r_{ij}^0\) :

Release time of the jth job of \(\tau ^{0}_{i}\);

\(C^{0}_i\) :

Worst-case execution time of \(\tau ^{0}_i\);

\(P^{0}_i\) :

Period of \(\tau ^{0}_i\);

\(D^{0}_i\) :

Hard relative deadline of \(\tau ^{0}_i\) to be determined;

\(d^{0}_{ij}\) :

Relative deadline of \(\tau ^{0}_{ij}\) to be determined;

\(\phi ^{0}_i\) :

Degree of criticality of \(\tau ^{0}_i\);

\(E_{ij}^{0}\) :

End execution time of \(\tau ^{0}_{ij}\);

\(R^{1}_e\) :

Release time of \(\tau ^{1}_e\);

\(r_{ef}^1\) :

Release time of the fth job of \(\tau ^{1}_e\);

\(C^{1}_{e}\) :

Worst-case execution time of \(\tau ^{1}_{e}\);

\(P^{1}_{e}\) :

Minimum interval between the arrival of two successive instances of \(\tau _{e}^1\);

\(D^{1}_{e}\) :

Hard relative deadline of \(\tau ^{1}_{e}\) to be determined;

\(d^{1}_{ef}\) :

Relative deadline of \(\tau ^{1}_{ef}\) to be determined;

\(\phi ^{1}_{e}\) :

Degree of criticality of \(\tau ^{1}_{e}\);

\(E_{ef}^{1}\) :

End execution time of \(\tau ^{1}_{ef}\);

\(C^{2}_{o}\) :

WCET of \(\tau ^{2}_{o}\);

\(D^{2}_{o}\) :

Soft deadline of \(\tau ^{2}_{o}\) to be determined;

\(\phi ^{2}_o\) :

Degree of criticality of \(\tau ^{2}_{o}\);

\(C^{s}\) :

Capacity of the NPS server;

\(P^{s}\) :

Period of the NPS server;

HP :

Hyper-period;

OC :

Maximum number of aperiodic tasks’ occurrences estimated on HP;

Q :

Maximum cumulative execution time requested by periodic and sporadic jobs on HP;

\(\tau _{i_1}\) :

Periodic or sporadic task;

\(\tau _{i_1j_1}\) :

The \(j_1\)th job of \(\tau _{i_1j_1}\);

\(\varDelta _{i_1j_1}\) :

Maximum cumulative execution time requested by periodic and sporadic jobs that have to be executed before \(\tau _{i_1j_1}\);

\( \beta _{l}^{i_1j_1}\) :

Number of jobs produced by a periodic or sporadic task \(\tau _{l}\) to be executed before \(\tau _{i_1j_1}\).

References

  1. Lakdhar, Z., Mzid, R., Khalgui, K., Li, Z., Frey, G., Al-Ahmari, A.: Multiobjective optimization approach for a portable development of reconfigurable real-time systems: from specification to implementation. IEEE Trans. Syst. Man Cybern. Syst. 49(3), 623–637 (2018)

    Article  Google Scholar 

  2. Anastasia, M., Jarvis, S., Todd, M.: Real-time dynamic-mode scheduling using single-integration hybrid optimization. IEEE Trans. Autom. Sci. Eng. 13(3), 1385–1398 (2016)

    Article  Google Scholar 

  3. Burns, A., Wellings, A.: Real-Time Systems and Programming Languages: Ada, Real-Time Java and C/Real-Time POSIX, 4th edn. Addison- Wesley Educational Publishers Inc., Boston (2009)

    Google Scholar 

  4. Ben Meskina, S., Doggaz, N., Khalgui, M., Li, Z.: Reconfiguration-based methodology for improving recovery performance of faults in smart grids. J. Inf. Sci. 454–455, 73–95 (2018)

    Article  MathSciNet  Google Scholar 

  5. Goubaa, A., Khalgui, M., Li, Z., Frey, G., Zhou, M.: Scheduling periodic and aperiodic tasks with time, energy harvesting and precedence constraints on multi-core systems. J. Inf. Sci. 520, 86–104 (2020)

    Article  MathSciNet  Google Scholar 

  6. Ghribi, I., Ben Abdallah, R., Khalgui, M., Li, Z., Alnowibet, K., Platzne, M.: R-codesign: codesign methodology for real-time reconfigurable embedded systems under energy constraints. IEEE Access 6, 14078–14092 (2018)

    Article  Google Scholar 

  7. Liu, C., Layland, J.: Scheduling algorithms for multiprogramming in a hard-real-time environment. J. ACM (JACM) 201, 46–61 (1973)

    Article  MathSciNet  Google Scholar 

  8. Baruah, S., Goossens, J.: Scheduling real-time tasks: algorithms and complexity. In: Handbook of Scheduling: Algorithms, Models, and Performance Analysis, vol. 3 (2004)

    Google Scholar 

  9. Von der Brüggen, G., Huang, W., Chen, J., Liu, C.: Uniprocessor scheduling strategies for self-suspending task systems. In: 24th International Conference on Real-Time Networks and Systems, pp. 119–128. Association for Computing Machinery, USA (2016)

    Google Scholar 

  10. Shanmugasundaram, M., Kumar, R., Kittur, H.: Performance analysis of preemptive based uniprocessor scheduling. Int. J. Electr. Comput. Eng. 6(4), 1489–1498 (2016)

    Google Scholar 

  11. Gammoudi, A., Benzina, A., Khalgui, M., Chillet, D.: New pack oriented solutions for energy-aware feasible adaptive real-time systems. In: Fujita, H., Guizzi, G. (eds.) SoMeT 2015. CCIS, vol. 532, pp. 73–86. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-22689-7_6

    Chapter  Google Scholar 

  12. Gammoudi, A., Benzina, A., Khalgui, M., Chillet, D., Goubaa, A.: ReConf-pack: a simulator for reconfigurable battery-powered real-time systems. In: Proceedings of European Simulation and Modelling Conference (ESM), Spain, pp. 225–232 (2016)

    Google Scholar 

  13. Gasmi, M., Mosbahi, O., Khalgui, M., Gomes, L., Li, Z.: R-node: new pipelined approach for an effective reconfigurable wireless sensor node. IEEE Trans. Syst. Man Cybern. Syst. 486, 892–905 (2016)

    Google Scholar 

  14. Wang, X., Li, Z., Wonham, W.: Dynamic multiple-period reconfiguration of real-time scheduling based on timed DES supervisory control. IEEE Trans. Industr. Inf. 121, 101–111 (2015)

    Google Scholar 

  15. Balbastre, P., Ripoll, I., Crespo, A.: Minimum deadline calculation for periodic real-time tasks in dynamic priority systems. IEEE Trans. Comput. 571, 96–109 (2007)

    MathSciNet  MATH  Google Scholar 

  16. Wang, X., Khemaissia, I., Khalgui, M., Li, Z., Mosbahi, O., Zhou, M.: Dynamic low-power reconfiguration of real-time systems with periodic and probabilistic tasks. IEEE Trans. Autom. Sci. Eng. 121, 258–271 (2014)

    Google Scholar 

  17. Wang, X., Khemaissia, I., Khalgui, M., Li, Z., Mosbahi, O., Zhou, M.: Dynamic multiple-period reconfiguration of real-time scheduling based on timed DES supervisory control. IEEE Trans. Industr. Inf. 121, 101–111 (2015)

    Google Scholar 

  18. Cervin, A., Lincoln, B., Eker, J., Arzén, K., Buttazzo, G.: The jitter margin and its application in the design of real-time control systems. In: Proceedings of the 10th International Conference on Real-Time and Embedded Computing Systems and Applications, Sweden, pp. 1–9 (2004)

    Google Scholar 

  19. Wang, X., Li, Z., Wonham, W.: Optimal priority-free conditionally-preemptive real-time scheduling of periodic tasks based on DES supervisory control. IEEE Trans. Syst. Man Cybern. Syst. 477, 1082–1098 (2016)

    Google Scholar 

  20. Ripoll, I., Ballester-Ripoll, R.: Period selection for minimal hyperperiod in periodic task systems. IEEE Trans. Comput. 629, 1813–1822 (2012)

    MathSciNet  MATH  Google Scholar 

  21. Yiwen, Z., Haibo, L.: Energy aware mixed tasks scheduling in real-time systems. Sustain. Comput. Inform. Syst. 23, 38–48 (2019)

    Google Scholar 

  22. Goubaa, A., Khalgui, M., Frey, G., Li, Z.: New approach for deadline calculation of periodic, sporadic and aperiodic real-time software tasks. In: Proceedings of the 15th International Conference on Software Technologies (ICSOFT 2020), 452–460 (2020). ISBN 978-989-758-443-5

    Google Scholar 

  23. Chetto, M.: Optimal scheduling for real-time jobs in energy harvesting computing systems. IEEE Trans. Emerg. Top. Comput. 22, 122–133 (2014)

    Article  Google Scholar 

  24. Sun, Y., Yuan, Z., Liu, Y., Li, X., Wang, Y., Wei, Q., Wang, Y., Narayanan, V., Yang, H.: Maximum energy efficiency tracking circuits for converter-less energy harvesting sensor nodes. IEEE Trans. Circuits Syst. II Express Briefs 646, 670–674 (2017)

    Article  Google Scholar 

  25. Yang, J., Wu, X., Wu, J.: Optimal scheduling of collaborative sensing in energy harvesting sensor networks. IEEE J. Sel. Areas Commun. 333, 512–523 (2015)

    Article  Google Scholar 

  26. Pillai, P., Shin, K.: Real-time dynamic voltage scaling for low-power embedded operating systems. In: Proceedings of the 13th Euromicro Conference on Real-Time Systems, pp. 59–66. ACM, USA (2001)

    Google Scholar 

  27. Buttazzo, G.: Hard Real-Time Computing Systems: Predictable Scheduling Algorithms and Applications, vol. 24. Springer, Boston (2011). https://doi.org/10.1007/978-1-4614-0676-1

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aicha Goubaa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Goubaa, A., Kahlgui, M., Georg, F., Li, Z. (2021). Efficient Scheduling of Periodic, Aperiodic, and Sporadic Real-Time Tasks with Deadline Constraints. In: van Sinderen, M., Maciaszek, L.A., Fill, HG. (eds) Software Technologies. ICSOFT 2020. Communications in Computer and Information Science, vol 1447. Springer, Cham. https://doi.org/10.1007/978-3-030-83007-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-83007-6_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-83006-9

  • Online ISBN: 978-3-030-83007-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics